| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > snssiALT | Structured version Visualization version Unicode version | ||
| Description: If a class is an element of another class, then its singleton is a subclass of that other class. Alternate proof of snssi 4339. This theorem was automatically generated from snssiALTVD 39062 using a translation program. (Contributed by Alan Sare, 11-Sep-2011.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| snssiALT |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | velsn 4193 |
. . . 4
| |
| 2 | eleq1a 2696 |
. . . 4
| |
| 3 | 1, 2 | syl5bi 232 |
. . 3
|
| 4 | 3 | alrimiv 1855 |
. 2
|
| 5 | dfss2 3591 |
. 2
| |
| 6 | 4, 5 | sylibr 224 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-in 3581 df-ss 3588 df-sn 4178 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |