MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snsssn Structured version   Visualization version   Unicode version

Theorem snsssn 4372
Description: If a singleton is a subset of another, their members are equal. (Contributed by NM, 28-May-2006.)
Hypothesis
Ref Expression
sneqr.1  |-  A  e. 
_V
Assertion
Ref Expression
snsssn  |-  ( { A }  C_  { B }  ->  A  =  B )

Proof of Theorem snsssn
StepHypRef Expression
1 sssn 4358 . 2  |-  ( { A }  C_  { B } 
<->  ( { A }  =  (/)  \/  { A }  =  { B } ) )
2 sneqr.1 . . . . . 6  |-  A  e. 
_V
32snnz 4309 . . . . 5  |-  { A }  =/=  (/)
43neii 2796 . . . 4  |-  -.  { A }  =  (/)
54pm2.21i 116 . . 3  |-  ( { A }  =  (/)  ->  A  =  B )
62sneqr 4371 . . 3  |-  ( { A }  =  { B }  ->  A  =  B )
75, 6jaoi 394 . 2  |-  ( ( { A }  =  (/) 
\/  { A }  =  { B } )  ->  A  =  B )
81, 7sylbi 207 1  |-  ( { A }  C_  { B }  ->  A  =  B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    \/ wo 383    = wceq 1483    e. wcel 1990   _Vcvv 3200    C_ wss 3574   (/)c0 3915   {csn 4177
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178
This theorem is referenced by:  k0004lem3  38447
  Copyright terms: Public domain W3C validator