| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > sssn | Structured version Visualization version Unicode version | ||
| Description: The subsets of a singleton. (Contributed by NM, 24-Apr-2004.) |
| Ref | Expression |
|---|---|
| sssn |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neq0 3930 |
. . . . . . 7
| |
| 2 | ssel 3597 |
. . . . . . . . . . 11
| |
| 3 | elsni 4194 |
. . . . . . . . . . 11
| |
| 4 | 2, 3 | syl6 35 |
. . . . . . . . . 10
|
| 5 | eleq1 2689 |
. . . . . . . . . 10
| |
| 6 | 4, 5 | syl6 35 |
. . . . . . . . 9
|
| 7 | 6 | ibd 258 |
. . . . . . . 8
|
| 8 | 7 | exlimdv 1861 |
. . . . . . 7
|
| 9 | 1, 8 | syl5bi 232 |
. . . . . 6
|
| 10 | snssi 4339 |
. . . . . 6
| |
| 11 | 9, 10 | syl6 35 |
. . . . 5
|
| 12 | 11 | anc2li 580 |
. . . 4
|
| 13 | eqss 3618 |
. . . 4
| |
| 14 | 12, 13 | syl6ibr 242 |
. . 3
|
| 15 | 14 | orrd 393 |
. 2
|
| 16 | 0ss 3972 |
. . . 4
| |
| 17 | sseq1 3626 |
. . . 4
| |
| 18 | 16, 17 | mpbiri 248 |
. . 3
|
| 19 | eqimss 3657 |
. . 3
| |
| 20 | 18, 19 | jaoi 394 |
. 2
|
| 21 | 15, 20 | impbii 199 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-dif 3577 df-in 3581 df-ss 3588 df-nul 3916 df-sn 4178 |
| This theorem is referenced by: eqsn 4361 eqsnOLD 4362 snsssn 4372 pwsn 4428 frsn 5189 foconst 6126 fin1a2lem12 9233 fpwwe2lem13 9464 gsumval2 17280 0top 20787 minveclem4a 23201 uvtxa01vtx0 26297 locfinref 29908 ordcmp 32446 bj-snmoore 33068 uneqsn 38321 |
| Copyright terms: Public domain | W3C validator |