| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > vtocl2d | Structured version Visualization version Unicode version | ||
| Description: Implicit substitution of two classes for two setvar variables. (Contributed by Thierry Arnoux, 25-Aug-2020.) |
| Ref | Expression |
|---|---|
| vtocl2d.a |
|
| vtocl2d.b |
|
| vtocl2d.1 |
|
| vtocl2d.3 |
|
| Ref | Expression |
|---|---|
| vtocl2d |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vtocl2d.b |
. . 3
| |
| 2 | vtocl2d.a |
. . 3
| |
| 3 | nfcv 2764 |
. . . 4
| |
| 4 | nfcv 2764 |
. . . 4
| |
| 5 | nfcv 2764 |
. . . 4
| |
| 6 | nfv 1843 |
. . . . 5
| |
| 7 | nfsbc1v 3455 |
. . . . 5
| |
| 8 | 6, 7 | nfim 1825 |
. . . 4
|
| 9 | nfv 1843 |
. . . 4
| |
| 10 | sbceq1a 3446 |
. . . . 5
| |
| 11 | 10 | imbi2d 330 |
. . . 4
|
| 12 | sbceq1a 3446 |
. . . . . 6
| |
| 13 | nfv 1843 |
. . . . . . . 8
| |
| 14 | nfv 1843 |
. . . . . . . 8
| |
| 15 | nfv 1843 |
. . . . . . . 8
| |
| 16 | vtocl2d.1 |
. . . . . . . 8
| |
| 17 | 13, 14, 15, 16 | sbc2iegf 3504 |
. . . . . . 7
|
| 18 | 2, 1, 17 | syl2anc 693 |
. . . . . 6
|
| 19 | 12, 18 | sylan9bb 736 |
. . . . 5
|
| 20 | 19 | pm5.74da 723 |
. . . 4
|
| 21 | vtocl2d.3 |
. . . 4
| |
| 22 | 3, 4, 5, 8, 9, 11, 20, 21 | vtocl2gf 3268 |
. . 3
|
| 23 | 1, 2, 22 | syl2anc 693 |
. 2
|
| 24 | 23 | pm2.43i 52 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-sbc 3436 |
| This theorem is referenced by: submateq 29875 |
| Copyright terms: Public domain | W3C validator |