Users' Mathboxes Mathbox for Emmett Weisz < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setrec2fun Structured version   Visualization version   Unicode version

Theorem setrec2fun 42439
Description: This is the second of two fundamental theorems about set recursion from which all other facts will be derived. It states that the class setrecs ( F ) is a subclass of all classes  C that are closed under  F. Taken together, theorems setrec1 42438 and setrec2v 42443 say that setrecs ( F ) is the minimal class closed under  F.

We express this by saying that if  F respects the  C_ relation and  C is closed under  F, then  B  C_  C. By substituting strategically constructed classes for  C, we can easily prove many useful properties. Although this theorem cannot show equality between  B and  C, if we intend to prove equality between  B and some particular class (such as 
On), we first apply this theorem, then the relevant induction theorem (such as tfi 7053) to the other class.

(Contributed by Emmett Weisz, 15-Feb-2021.) (New usage is discouraged.)

Hypotheses
Ref Expression
setrec2fun.1  |-  F/_ a F
setrec2fun.2  |-  B  = setrecs
( F )
setrec2fun.3  |-  Fun  F
setrec2fun.4  |-  ( ph  ->  A. a ( a 
C_  C  ->  ( F `  a )  C_  C ) )
Assertion
Ref Expression
setrec2fun  |-  ( ph  ->  B  C_  C )
Distinct variable group:    C, a
Allowed substitution hints:    ph( a)    B( a)    F( a)

Proof of Theorem setrec2fun
Dummy variables  x  w  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 setrec2fun.2 . . 3  |-  B  = setrecs
( F )
2 df-setrecs 42431 . . 3  |- setrecs ( F )  =  U. {
y  |  A. z
( A. w ( w  C_  y  ->  ( w  C_  z  ->  ( F `  w ) 
C_  z ) )  ->  y  C_  z
) }
31, 2eqtri 2644 . 2  |-  B  = 
U. { y  | 
A. z ( A. w ( w  C_  y  ->  ( w  C_  z  ->  ( F `  w )  C_  z
) )  ->  y  C_  z ) }
4 eqid 2622 . . . . . 6  |-  { y  |  A. z ( A. w ( w 
C_  y  ->  (
w  C_  z  ->  ( F `  w ) 
C_  z ) )  ->  y  C_  z
) }  =  {
y  |  A. z
( A. w ( w  C_  y  ->  ( w  C_  z  ->  ( F `  w ) 
C_  z ) )  ->  y  C_  z
) }
5 vex 3203 . . . . . . 7  |-  x  e. 
_V
65a1i 11 . . . . . 6  |-  ( ph  ->  x  e.  _V )
74, 6setrec1lem1 42434 . . . . 5  |-  ( ph  ->  ( x  e.  {
y  |  A. z
( A. w ( w  C_  y  ->  ( w  C_  z  ->  ( F `  w ) 
C_  z ) )  ->  y  C_  z
) }  <->  A. z
( A. w ( w  C_  x  ->  ( w  C_  z  ->  ( F `  w ) 
C_  z ) )  ->  x  C_  z
) ) )
8 id 22 . . . . . . . . . . . . . . 15  |-  ( w 
C_  ( C  i^i  U. ( F " ~P x ) )  ->  w  C_  ( C  i^i  U. ( F " ~P x ) ) )
9 inss1 3833 . . . . . . . . . . . . . . 15  |-  ( C  i^i  U. ( F
" ~P x ) )  C_  C
108, 9syl6ss 3615 . . . . . . . . . . . . . 14  |-  ( w 
C_  ( C  i^i  U. ( F " ~P x ) )  ->  w  C_  C )
11 setrec2fun.4 . . . . . . . . . . . . . . 15  |-  ( ph  ->  A. a ( a 
C_  C  ->  ( F `  a )  C_  C ) )
12 nfv 1843 . . . . . . . . . . . . . . . . 17  |-  F/ a  w  C_  C
13 setrec2fun.1 . . . . . . . . . . . . . . . . . . 19  |-  F/_ a F
14 nfcv 2764 . . . . . . . . . . . . . . . . . . 19  |-  F/_ a
w
1513, 14nffv 6198 . . . . . . . . . . . . . . . . . 18  |-  F/_ a
( F `  w
)
16 nfcv 2764 . . . . . . . . . . . . . . . . . 18  |-  F/_ a C
1715, 16nfss 3596 . . . . . . . . . . . . . . . . 17  |-  F/ a ( F `  w
)  C_  C
1812, 17nfim 1825 . . . . . . . . . . . . . . . 16  |-  F/ a ( w  C_  C  ->  ( F `  w
)  C_  C )
19 sseq1 3626 . . . . . . . . . . . . . . . . . 18  |-  ( a  =  w  ->  (
a  C_  C  <->  w  C_  C
) )
20 fveq2 6191 . . . . . . . . . . . . . . . . . . 19  |-  ( a  =  w  ->  ( F `  a )  =  ( F `  w ) )
2120sseq1d 3632 . . . . . . . . . . . . . . . . . 18  |-  ( a  =  w  ->  (
( F `  a
)  C_  C  <->  ( F `  w )  C_  C
) )
2219, 21imbi12d 334 . . . . . . . . . . . . . . . . 17  |-  ( a  =  w  ->  (
( a  C_  C  ->  ( F `  a
)  C_  C )  <->  ( w  C_  C  ->  ( F `  w ) 
C_  C ) ) )
2322biimpd 219 . . . . . . . . . . . . . . . 16  |-  ( a  =  w  ->  (
( a  C_  C  ->  ( F `  a
)  C_  C )  ->  ( w  C_  C  ->  ( F `  w
)  C_  C )
) )
2418, 23spim 2254 . . . . . . . . . . . . . . 15  |-  ( A. a ( a  C_  C  ->  ( F `  a )  C_  C
)  ->  ( w  C_  C  ->  ( F `  w )  C_  C
) )
2511, 24syl 17 . . . . . . . . . . . . . 14  |-  ( ph  ->  ( w  C_  C  ->  ( F `  w
)  C_  C )
)
2610, 25syl5 34 . . . . . . . . . . . . 13  |-  ( ph  ->  ( w  C_  ( C  i^i  U. ( F
" ~P x ) )  ->  ( F `  w )  C_  C
) )
2726imp 445 . . . . . . . . . . . 12  |-  ( (
ph  /\  w  C_  ( C  i^i  U. ( F
" ~P x ) ) )  ->  ( F `  w )  C_  C )
28273adant2 1080 . . . . . . . . . . 11  |-  ( (
ph  /\  w  C_  x  /\  w  C_  ( C  i^i  U. ( F
" ~P x ) ) )  ->  ( F `  w )  C_  C )
29 selpw 4165 . . . . . . . . . . . . . . 15  |-  ( w  e.  ~P x  <->  w  C_  x
)
30 eliman0 6223 . . . . . . . . . . . . . . . 16  |-  ( ( w  e.  ~P x  /\  -.  ( F `  w )  =  (/) )  ->  ( F `  w )  e.  ( F " ~P x
) )
3130ex 450 . . . . . . . . . . . . . . 15  |-  ( w  e.  ~P x  -> 
( -.  ( F `
 w )  =  (/)  ->  ( F `  w )  e.  ( F " ~P x
) ) )
3229, 31sylbir 225 . . . . . . . . . . . . . 14  |-  ( w 
C_  x  ->  ( -.  ( F `  w
)  =  (/)  ->  ( F `  w )  e.  ( F " ~P x ) ) )
33 elssuni 4467 . . . . . . . . . . . . . 14  |-  ( ( F `  w )  e.  ( F " ~P x )  ->  ( F `  w )  C_ 
U. ( F " ~P x ) )
3432, 33syl6 35 . . . . . . . . . . . . 13  |-  ( w 
C_  x  ->  ( -.  ( F `  w
)  =  (/)  ->  ( F `  w )  C_ 
U. ( F " ~P x ) ) )
35 id 22 . . . . . . . . . . . . . 14  |-  ( ( F `  w )  =  (/)  ->  ( F `
 w )  =  (/) )
36 0ss 3972 . . . . . . . . . . . . . 14  |-  (/)  C_  U. ( F " ~P x )
3735, 36syl6eqss 3655 . . . . . . . . . . . . 13  |-  ( ( F `  w )  =  (/)  ->  ( F `
 w )  C_  U. ( F " ~P x ) )
3834, 37pm2.61d2 172 . . . . . . . . . . . 12  |-  ( w 
C_  x  ->  ( F `  w )  C_ 
U. ( F " ~P x ) )
39383ad2ant2 1083 . . . . . . . . . . 11  |-  ( (
ph  /\  w  C_  x  /\  w  C_  ( C  i^i  U. ( F
" ~P x ) ) )  ->  ( F `  w )  C_ 
U. ( F " ~P x ) )
4028, 39ssind 3837 . . . . . . . . . 10  |-  ( (
ph  /\  w  C_  x  /\  w  C_  ( C  i^i  U. ( F
" ~P x ) ) )  ->  ( F `  w )  C_  ( C  i^i  U. ( F " ~P x
) ) )
41403exp 1264 . . . . . . . . 9  |-  ( ph  ->  ( w  C_  x  ->  ( w  C_  ( C  i^i  U. ( F
" ~P x ) )  ->  ( F `  w )  C_  ( C  i^i  U. ( F
" ~P x ) ) ) ) )
4241alrimiv 1855 . . . . . . . 8  |-  ( ph  ->  A. w ( w 
C_  x  ->  (
w  C_  ( C  i^i  U. ( F " ~P x ) )  -> 
( F `  w
)  C_  ( C  i^i  U. ( F " ~P x ) ) ) ) )
43 setrec2fun.3 . . . . . . . . . . . 12  |-  Fun  F
445pwex 4848 . . . . . . . . . . . . 13  |-  ~P x  e.  _V
4544funimaex 5976 . . . . . . . . . . . 12  |-  ( Fun 
F  ->  ( F " ~P x )  e. 
_V )
4643, 45ax-mp 5 . . . . . . . . . . 11  |-  ( F
" ~P x )  e.  _V
4746uniex 6953 . . . . . . . . . 10  |-  U. ( F " ~P x )  e.  _V
4847inex2 4800 . . . . . . . . 9  |-  ( C  i^i  U. ( F
" ~P x ) )  e.  _V
49 sseq2 3627 . . . . . . . . . . . . 13  |-  ( z  =  ( C  i^i  U. ( F " ~P x ) )  -> 
( w  C_  z  <->  w 
C_  ( C  i^i  U. ( F " ~P x ) ) ) )
50 sseq2 3627 . . . . . . . . . . . . 13  |-  ( z  =  ( C  i^i  U. ( F " ~P x ) )  -> 
( ( F `  w )  C_  z  <->  ( F `  w ) 
C_  ( C  i^i  U. ( F " ~P x ) ) ) )
5149, 50imbi12d 334 . . . . . . . . . . . 12  |-  ( z  =  ( C  i^i  U. ( F " ~P x ) )  -> 
( ( w  C_  z  ->  ( F `  w )  C_  z
)  <->  ( w  C_  ( C  i^i  U. ( F " ~P x ) )  ->  ( F `  w )  C_  ( C  i^i  U. ( F
" ~P x ) ) ) ) )
5251imbi2d 330 . . . . . . . . . . 11  |-  ( z  =  ( C  i^i  U. ( F " ~P x ) )  -> 
( ( w  C_  x  ->  ( w  C_  z  ->  ( F `  w )  C_  z
) )  <->  ( w  C_  x  ->  ( w  C_  ( C  i^i  U. ( F " ~P x
) )  ->  ( F `  w )  C_  ( C  i^i  U. ( F " ~P x
) ) ) ) ) )
5352albidv 1849 . . . . . . . . . 10  |-  ( z  =  ( C  i^i  U. ( F " ~P x ) )  -> 
( A. w ( w  C_  x  ->  ( w  C_  z  ->  ( F `  w ) 
C_  z ) )  <->  A. w ( w  C_  x  ->  ( w  C_  ( C  i^i  U. ( F " ~P x ) )  ->  ( F `  w )  C_  ( C  i^i  U. ( F
" ~P x ) ) ) ) ) )
54 sseq2 3627 . . . . . . . . . 10  |-  ( z  =  ( C  i^i  U. ( F " ~P x ) )  -> 
( x  C_  z  <->  x 
C_  ( C  i^i  U. ( F " ~P x ) ) ) )
5553, 54imbi12d 334 . . . . . . . . 9  |-  ( z  =  ( C  i^i  U. ( F " ~P x ) )  -> 
( ( A. w
( w  C_  x  ->  ( w  C_  z  ->  ( F `  w
)  C_  z )
)  ->  x  C_  z
)  <->  ( A. w
( w  C_  x  ->  ( w  C_  ( C  i^i  U. ( F
" ~P x ) )  ->  ( F `  w )  C_  ( C  i^i  U. ( F
" ~P x ) ) ) )  ->  x  C_  ( C  i^i  U. ( F " ~P x ) ) ) ) )
5648, 55spcv 3299 . . . . . . . 8  |-  ( A. z ( A. w
( w  C_  x  ->  ( w  C_  z  ->  ( F `  w
)  C_  z )
)  ->  x  C_  z
)  ->  ( A. w ( w  C_  x  ->  ( w  C_  ( C  i^i  U. ( F " ~P x ) )  ->  ( F `  w )  C_  ( C  i^i  U. ( F
" ~P x ) ) ) )  ->  x  C_  ( C  i^i  U. ( F " ~P x ) ) ) )
5742, 56mpan9 486 . . . . . . 7  |-  ( (
ph  /\  A. z
( A. w ( w  C_  x  ->  ( w  C_  z  ->  ( F `  w ) 
C_  z ) )  ->  x  C_  z
) )  ->  x  C_  ( C  i^i  U. ( F " ~P x
) ) )
5857, 9syl6ss 3615 . . . . . 6  |-  ( (
ph  /\  A. z
( A. w ( w  C_  x  ->  ( w  C_  z  ->  ( F `  w ) 
C_  z ) )  ->  x  C_  z
) )  ->  x  C_  C )
5958ex 450 . . . . 5  |-  ( ph  ->  ( A. z ( A. w ( w 
C_  x  ->  (
w  C_  z  ->  ( F `  w ) 
C_  z ) )  ->  x  C_  z
)  ->  x  C_  C
) )
607, 59sylbid 230 . . . 4  |-  ( ph  ->  ( x  e.  {
y  |  A. z
( A. w ( w  C_  y  ->  ( w  C_  z  ->  ( F `  w ) 
C_  z ) )  ->  y  C_  z
) }  ->  x  C_  C ) )
6160ralrimiv 2965 . . 3  |-  ( ph  ->  A. x  e.  {
y  |  A. z
( A. w ( w  C_  y  ->  ( w  C_  z  ->  ( F `  w ) 
C_  z ) )  ->  y  C_  z
) } x  C_  C )
62 unissb 4469 . . 3  |-  ( U. { y  |  A. z ( A. w
( w  C_  y  ->  ( w  C_  z  ->  ( F `  w
)  C_  z )
)  ->  y  C_  z ) }  C_  C 
<-> 
A. x  e.  {
y  |  A. z
( A. w ( w  C_  y  ->  ( w  C_  z  ->  ( F `  w ) 
C_  z ) )  ->  y  C_  z
) } x  C_  C )
6361, 62sylibr 224 . 2  |-  ( ph  ->  U. { y  | 
A. z ( A. w ( w  C_  y  ->  ( w  C_  z  ->  ( F `  w )  C_  z
) )  ->  y  C_  z ) }  C_  C )
643, 63syl5eqss 3649 1  |-  ( ph  ->  B  C_  C )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037   A.wal 1481    = wceq 1483    e. wcel 1990   {cab 2608   F/_wnfc 2751   A.wral 2912   _Vcvv 3200    i^i cin 3573    C_ wss 3574   (/)c0 3915   ~Pcpw 4158   U.cuni 4436   "cima 5117   Fun wfun 5882   ` cfv 5888  setrecscsetrecs 42430
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-id 5024  df-xp 5120  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fv 5896  df-setrecs 42431
This theorem is referenced by:  setrec2  42442
  Copyright terms: Public domain W3C validator