Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  srhmsubclem1 Structured version   Visualization version   Unicode version

Theorem srhmsubclem1 42073
Description: Lemma 1 for srhmsubc 42076. (Contributed by AV, 19-Feb-2020.)
Hypotheses
Ref Expression
srhmsubc.s  |-  A. r  e.  S  r  e.  Ring
srhmsubc.c  |-  C  =  ( U  i^i  S
)
Assertion
Ref Expression
srhmsubclem1  |-  ( X  e.  C  ->  X  e.  ( U  i^i  Ring ) )
Distinct variable groups:    S, r    X, r
Allowed substitution hints:    C( r)    U( r)

Proof of Theorem srhmsubclem1
StepHypRef Expression
1 eleq1 2689 . . . 4  |-  ( r  =  X  ->  (
r  e.  Ring  <->  X  e.  Ring ) )
2 srhmsubc.s . . . 4  |-  A. r  e.  S  r  e.  Ring
31, 2vtoclri 3283 . . 3  |-  ( X  e.  S  ->  X  e.  Ring )
43anim2i 593 . 2  |-  ( ( X  e.  U  /\  X  e.  S )  ->  ( X  e.  U  /\  X  e.  Ring ) )
5 srhmsubc.c . . 3  |-  C  =  ( U  i^i  S
)
65elin2 3801 . 2  |-  ( X  e.  C  <->  ( X  e.  U  /\  X  e.  S ) )
7 elin 3796 . 2  |-  ( X  e.  ( U  i^i  Ring )  <->  ( X  e.  U  /\  X  e. 
Ring ) )
84, 6, 73imtr4i 281 1  |-  ( X  e.  C  ->  X  e.  ( U  i^i  Ring ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912    i^i cin 3573   Ringcrg 18547
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-v 3202  df-in 3581
This theorem is referenced by:  srhmsubclem2  42074  srhmsubcALTVlem1  42092
  Copyright terms: Public domain W3C validator