Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nzerooringczr Structured version   Visualization version   Unicode version

Theorem nzerooringczr 42072
Description: There is no zero object in the category of unital rings (at least in a universe which contains the zero ring and the ring of integers). Example 7.9 (3) in [Adamek] p. 103. (Contributed by AV, 18-Apr-2020.)
Hypotheses
Ref Expression
nzerooringczr.u  |-  ( ph  ->  U  e.  V )
nzerooringczr.c  |-  C  =  (RingCat `  U )
nzerooringczr.z  |-  ( ph  ->  Z  e.  ( Ring  \ NzRing ) )
nzerooringczr.e  |-  ( ph  ->  Z  e.  U )
nzerooringczr.i  |-  ( ph  ->ring  e.  U )
Assertion
Ref Expression
nzerooringczr  |-  ( ph  ->  (ZeroO `  C )  =  (/) )

Proof of Theorem nzerooringczr
Dummy variables  f  h are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ax-1 6 . 2  |-  ( (ZeroO `  C )  =  (/)  ->  ( ph  ->  (ZeroO `  C )  =  (/) ) )
2 neq0 3930 . . 3  |-  ( -.  (ZeroO `  C )  =  (/)  <->  E. h  h  e.  (ZeroO `  C )
)
3 nzerooringczr.u . . . . . . . 8  |-  ( ph  ->  U  e.  V )
4 nzerooringczr.c . . . . . . . . 9  |-  C  =  (RingCat `  U )
54ringccat 42024 . . . . . . . 8  |-  ( U  e.  V  ->  C  e.  Cat )
63, 5syl 17 . . . . . . 7  |-  ( ph  ->  C  e.  Cat )
7 iszeroi 16659 . . . . . . 7  |-  ( ( C  e.  Cat  /\  h  e.  (ZeroO `  C
) )  ->  (
h  e.  ( Base `  C )  /\  (
h  e.  (InitO `  C )  /\  h  e.  (TermO `  C )
) ) )
86, 7sylan 488 . . . . . 6  |-  ( (
ph  /\  h  e.  (ZeroO `  C ) )  ->  ( h  e.  ( Base `  C
)  /\  ( h  e.  (InitO `  C )  /\  h  e.  (TermO `  C ) ) ) )
9 nzerooringczr.z . . . . . . . . 9  |-  ( ph  ->  Z  e.  ( Ring  \ NzRing ) )
10 nzerooringczr.e . . . . . . . . 9  |-  ( ph  ->  Z  e.  U )
113, 4, 9, 10zrtermoringc 42070 . . . . . . . 8  |-  ( ph  ->  Z  e.  (TermO `  C ) )
12 nzerooringczr.i . . . . . . . . . 10  |-  ( ph  ->ring  e.  U )
133, 12, 4irinitoringc 42069 . . . . . . . . 9  |-  ( ph  ->ring  e.  (InitO `  C )
)
146ad2antrr 762 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  h  e.  (InitO `  C )
)  /\ring  e.  (InitO `  C
) )  ->  C  e.  Cat )
15 simplr 792 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  h  e.  (InitO `  C )
)  /\ring  e.  (InitO `  C
) )  ->  h  e.  (InitO `  C )
)
16 simpr 477 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ph  /\  h  e.  (InitO `  C )
)  /\ring  e.  (InitO `  C
) )  ->ring  e.  (InitO `  C
) )
1714, 15, 16initoeu1w 16662 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  h  e.  (InitO `  C )
)  /\ring  e.  (InitO `  C
) )  ->  h
(  ~=c𝑐  `  C )ring )
186ad2antrr 762 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  h  e.  (TermO `  C )
)  /\  Z  e.  (TermO `  C ) )  ->  C  e.  Cat )
19 simpr 477 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  h  e.  (TermO `  C )
)  /\  Z  e.  (TermO `  C ) )  ->  Z  e.  (TermO `  C ) )
20 simplr 792 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ( ( ph  /\  h  e.  (TermO `  C )
)  /\  Z  e.  (TermO `  C ) )  ->  h  e.  (TermO `  C ) )
2118, 19, 20termoeu1w 16669 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  h  e.  (TermO `  C )
)  /\  Z  e.  (TermO `  C ) )  ->  Z (  ~=c𝑐  `  C
) h )
22 cictr 16465 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ( C  e.  Cat  /\  Z (  ~=c𝑐  `  C ) h  /\  h ( 
~=c𝑐  `  C )ring )  ->  Z (  ~=c𝑐  `  C )ring )
236, 22syl3an1 1359 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  Z (  ~=c𝑐  `  C ) h  /\  h (  ~=c𝑐  `  C )ring )  ->  Z (  ~=c𝑐  `  C
)ring )
24 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  (  Iso  `  C )  =  (  Iso  `  C )
25 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( Base `  C )  =  (
Base `  C )
269eldifad 3586 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ph  ->  Z  e.  Ring )
2710, 26elind 3798 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ph  ->  Z  e.  ( U  i^i  Ring ) )
284, 25, 3ringcbas 42011 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ph  ->  ( Base `  C
)  =  ( U  i^i  Ring ) )
2927, 28eleqtrrd 2704 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ph  ->  Z  e.  ( Base `  C ) )
30 zringring 19821 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-ring  e.  Ring
3130a1i 11 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ph  ->ring  e. 
Ring )
3212, 31elind 3798 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ph  ->ring  e.  ( U  i^i  Ring ) )
3332, 28eleqtrrd 2704 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ph  ->ring  e.  ( Base `  C
) )
3424, 25, 6, 29, 33cic 16459 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ph  ->  ( Z (  ~=c𝑐  `  C
)ring  <->  E. f  f  e.  ( Z (  Iso  `  C
)ring ) ) )
35 n0 3931 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ( Z (  Iso  `  C
)ring )  =/=  (/)  <->  E. f 
f  e.  ( Z (  Iso  `  C
)ring ) )
36 eqid 2622 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( Hom  `  C )  =  ( Hom  `  C )
3725, 36, 24, 6, 29, 33isohom 16436 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ph  ->  ( Z (  Iso  `  C )ring )  C_  ( Z
( Hom  `  C )ring ) )
38 ssn0 3976 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ( ( Z (  Iso  `  C )ring )  C_  ( Z
( Hom  `  C )ring )  /\  ( Z (  Iso  `  C )ring )  =/=  (/) )  ->  ( Z ( Hom  `  C
)ring )  =/=  (/) )
394, 25, 3, 36, 29, 33ringchom 42013 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ph  ->  ( Z ( Hom  `  C )ring )  =  ( Z RingHom ℤring )
)
4039neeq1d 2853 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ph  ->  ( ( Z ( Hom  `  C )ring )  =/=  (/)  <->  ( Z RingHom ℤring )  =/=  (/) ) )
41 zringnzr 19830 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-ring  e. NzRing
42 nrhmzr 41873 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  |-  ( ( Z  e.  ( Ring  \ NzRing )  /\ring  e. NzRing )  ->  ( Z RingHom ℤring )  =  (/) )
439, 41, 42sylancl 694 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ph  ->  ( Z RingHom ℤring )  =  (/) )
44 eqneqall 2805 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34  |-  ( ( Z RingHom ℤring )  =  (/)  ->  (
( Z RingHom ℤring )  =/=  (/)  ->  (ZeroO `  C )  =  (/) ) )
4543, 44syl 17 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  |-  ( ph  ->  ( ( Z RingHom ℤring )  =/=  (/)  ->  (ZeroO `  C )  =  (/) ) )
4640, 45sylbid 230 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  |-  ( ph  ->  ( ( Z ( Hom  `  C )ring )  =/=  (/)  ->  (ZeroO `  C
)  =  (/) ) )
4738, 46syl5com 31 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  |-  ( ( ( Z (  Iso  `  C )ring )  C_  ( Z
( Hom  `  C )ring )  /\  ( Z (  Iso  `  C )ring )  =/=  (/) )  ->  ( ph  ->  (ZeroO `  C
)  =  (/) ) )
4847expcom 451 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30  |-  ( ( Z (  Iso  `  C
)ring )  =/=  (/)  ->  (
( Z (  Iso  `  C )ring )  C_  ( Z
( Hom  `  C )ring )  ->  ( ph  ->  (ZeroO `  C )  =  (/) ) ) )
4948com13 88 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  |-  ( ph  ->  ( ( Z (  Iso  `  C )ring )  C_  ( Z ( Hom  `  C )ring )  ->  ( ( Z (  Iso  `  C
)ring )  =/=  (/)  ->  (ZeroO `  C )  =  (/) ) ) )
5037, 49mpd 15 . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  |-  ( ph  ->  ( ( Z (  Iso  `  C )ring )  =/=  (/)  ->  (ZeroO `  C
)  =  (/) ) )
5135, 50syl5bir 233 . . . . . . . . . . . . . . . . . . . . . . . . . . 27  |-  ( ph  ->  ( E. f  f  e.  ( Z (  Iso  `  C )ring )  ->  (ZeroO `  C )  =  (/) ) )
5234, 51sylbid 230 . . . . . . . . . . . . . . . . . . . . . . . . . 26  |-  ( ph  ->  ( Z (  ~=c𝑐  `  C
)ring 
->  (ZeroO `  C )  =  (/) ) )
53523ad2ant1 1082 . . . . . . . . . . . . . . . . . . . . . . . . 25  |-  ( (
ph  /\  Z (  ~=c𝑐  `  C ) h  /\  h (  ~=c𝑐  `  C )ring )  ->  ( Z ( 
~=c𝑐  `  C )ring 
->  (ZeroO `  C )  =  (/) ) )
5423, 53mpd 15 . . . . . . . . . . . . . . . . . . . . . . . 24  |-  ( (
ph  /\  Z (  ~=c𝑐  `  C ) h  /\  h (  ~=c𝑐  `  C )ring )  ->  (ZeroO `  C
)  =  (/) )
55543exp 1264 . . . . . . . . . . . . . . . . . . . . . . 23  |-  ( ph  ->  ( Z (  ~=c𝑐  `  C
) h  ->  (
h (  ~=c𝑐  `  C )ring  -> 
(ZeroO `  C )  =  (/) ) ) )
5655a1dd 50 . . . . . . . . . . . . . . . . . . . . . 22  |-  ( ph  ->  ( Z (  ~=c𝑐  `  C
) h  ->  (
h  e.  ( Base `  C )  ->  (
h (  ~=c𝑐  `  C )ring  -> 
(ZeroO `  C )  =  (/) ) ) ) )
5756ad2antrr 762 . . . . . . . . . . . . . . . . . . . . 21  |-  ( ( ( ph  /\  h  e.  (TermO `  C )
)  /\  Z  e.  (TermO `  C ) )  ->  ( Z ( 
~=c𝑐  `  C ) h  -> 
( h  e.  (
Base `  C )  ->  ( h (  ~=c𝑐  `  C
)ring 
->  (ZeroO `  C )  =  (/) ) ) ) )
5821, 57mpd 15 . . . . . . . . . . . . . . . . . . . 20  |-  ( ( ( ph  /\  h  e.  (TermO `  C )
)  /\  Z  e.  (TermO `  C ) )  ->  ( h  e.  ( Base `  C
)  ->  ( h
(  ~=c𝑐  `  C )ring 
->  (ZeroO `  C )  =  (/) ) ) )
5958exp31 630 . . . . . . . . . . . . . . . . . . 19  |-  ( ph  ->  ( h  e.  (TermO `  C )  ->  ( Z  e.  (TermO `  C
)  ->  ( h  e.  ( Base `  C
)  ->  ( h
(  ~=c𝑐  `  C )ring 
->  (ZeroO `  C )  =  (/) ) ) ) ) )
6059com34 91 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  ( h  e.  (TermO `  C )  ->  (
h  e.  ( Base `  C )  ->  ( Z  e.  (TermO `  C
)  ->  ( h
(  ~=c𝑐  `  C )ring 
->  (ZeroO `  C )  =  (/) ) ) ) ) )
6160com25 99 . . . . . . . . . . . . . . . . 17  |-  ( ph  ->  ( h (  ~=c𝑐  `  C
)ring 
->  ( h  e.  (
Base `  C )  ->  ( Z  e.  (TermO `  C )  ->  (
h  e.  (TermO `  C )  ->  (ZeroO `  C )  =  (/) ) ) ) ) )
6261ad2antrr 762 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  h  e.  (InitO `  C )
)  /\ring  e.  (InitO `  C
) )  ->  (
h (  ~=c𝑐  `  C )ring  -> 
( h  e.  (
Base `  C )  ->  ( Z  e.  (TermO `  C )  ->  (
h  e.  (TermO `  C )  ->  (ZeroO `  C )  =  (/) ) ) ) ) )
6317, 62mpd 15 . . . . . . . . . . . . . . 15  |-  ( ( ( ph  /\  h  e.  (InitO `  C )
)  /\ring  e.  (InitO `  C
) )  ->  (
h  e.  ( Base `  C )  ->  ( Z  e.  (TermO `  C
)  ->  ( h  e.  (TermO `  C )  ->  (ZeroO `  C )  =  (/) ) ) ) )
6463ex 450 . . . . . . . . . . . . . 14  |-  ( (
ph  /\  h  e.  (InitO `  C ) )  ->  (ring  e.  (InitO `  C
)  ->  ( h  e.  ( Base `  C
)  ->  ( Z  e.  (TermO `  C )  ->  ( h  e.  (TermO `  C )  ->  (ZeroO `  C )  =  (/) ) ) ) ) )
6564com25 99 . . . . . . . . . . . . 13  |-  ( (
ph  /\  h  e.  (InitO `  C ) )  ->  ( h  e.  (TermO `  C )  ->  ( h  e.  (
Base `  C )  ->  ( Z  e.  (TermO `  C )  ->  (ring  e.  (InitO `  C )  -> 
(ZeroO `  C )  =  (/) ) ) ) ) )
6665expimpd 629 . . . . . . . . . . . 12  |-  ( ph  ->  ( ( h  e.  (InitO `  C )  /\  h  e.  (TermO `  C ) )  -> 
( h  e.  (
Base `  C )  ->  ( Z  e.  (TermO `  C )  ->  (ring  e.  (InitO `  C )  -> 
(ZeroO `  C )  =  (/) ) ) ) ) )
6766com23 86 . . . . . . . . . . 11  |-  ( ph  ->  ( h  e.  (
Base `  C )  ->  ( ( h  e.  (InitO `  C )  /\  h  e.  (TermO `  C ) )  -> 
( Z  e.  (TermO `  C )  ->  (ring  e.  (InitO `  C )  -> 
(ZeroO `  C )  =  (/) ) ) ) ) )
6867impd 447 . . . . . . . . . 10  |-  ( ph  ->  ( ( h  e.  ( Base `  C
)  /\  ( h  e.  (InitO `  C )  /\  h  e.  (TermO `  C ) ) )  ->  ( Z  e.  (TermO `  C )  ->  (ring  e.  (InitO `  C
)  ->  (ZeroO `  C
)  =  (/) ) ) ) )
6968com24 95 . . . . . . . . 9  |-  ( ph  ->  (ring  e.  (InitO `  C
)  ->  ( Z  e.  (TermO `  C )  ->  ( ( h  e.  ( Base `  C
)  /\  ( h  e.  (InitO `  C )  /\  h  e.  (TermO `  C ) ) )  ->  (ZeroO `  C
)  =  (/) ) ) ) )
7013, 69mpd 15 . . . . . . . 8  |-  ( ph  ->  ( Z  e.  (TermO `  C )  ->  (
( h  e.  (
Base `  C )  /\  ( h  e.  (InitO `  C )  /\  h  e.  (TermO `  C )
) )  ->  (ZeroO `  C )  =  (/) ) ) )
7111, 70mpd 15 . . . . . . 7  |-  ( ph  ->  ( ( h  e.  ( Base `  C
)  /\  ( h  e.  (InitO `  C )  /\  h  e.  (TermO `  C ) ) )  ->  (ZeroO `  C
)  =  (/) ) )
7271adantr 481 . . . . . 6  |-  ( (
ph  /\  h  e.  (ZeroO `  C ) )  ->  ( ( h  e.  ( Base `  C
)  /\  ( h  e.  (InitO `  C )  /\  h  e.  (TermO `  C ) ) )  ->  (ZeroO `  C
)  =  (/) ) )
738, 72mpd 15 . . . . 5  |-  ( (
ph  /\  h  e.  (ZeroO `  C ) )  ->  (ZeroO `  C
)  =  (/) )
7473expcom 451 . . . 4  |-  ( h  e.  (ZeroO `  C
)  ->  ( ph  ->  (ZeroO `  C )  =  (/) ) )
7574exlimiv 1858 . . 3  |-  ( E. h  h  e.  (ZeroO `  C )  ->  ( ph  ->  (ZeroO `  C
)  =  (/) ) )
762, 75sylbi 207 . 2  |-  ( -.  (ZeroO `  C )  =  (/)  ->  ( ph  ->  (ZeroO `  C )  =  (/) ) )
771, 76pm2.61i 176 1  |-  ( ph  ->  (ZeroO `  C )  =  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   Hom chom 15952   Catccat 16325    Iso ciso 16406    ~=c𝑐 ccic 16455  InitOcinito 16638  TermOctermo 16639  ZeroOczeroo 16640   Ringcrg 18547   RingHom crh 18712  NzRingcnzr 19257  ℤringzring 19818  RingCatcringc 42003
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013  ax-addf 10015  ax-mulf 10016
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-fal 1489  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-supp 7296  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-ixp 7909  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-2 11079  df-3 11080  df-4 11081  df-5 11082  df-6 11083  df-7 11084  df-8 11085  df-9 11086  df-n0 11293  df-xnn0 11364  df-z 11378  df-dec 11494  df-uz 11688  df-fz 12327  df-seq 12802  df-hash 13118  df-struct 15859  df-ndx 15860  df-slot 15861  df-base 15863  df-sets 15864  df-ress 15865  df-plusg 15954  df-mulr 15955  df-starv 15956  df-tset 15960  df-ple 15961  df-ds 15964  df-unif 15965  df-hom 15966  df-cco 15967  df-0g 16102  df-cat 16329  df-cid 16330  df-homf 16331  df-sect 16407  df-inv 16408  df-iso 16409  df-cic 16456  df-ssc 16470  df-resc 16471  df-subc 16472  df-inito 16641  df-termo 16642  df-zeroo 16643  df-estrc 16763  df-mgm 17242  df-sgrp 17284  df-mnd 17295  df-mhm 17335  df-grp 17425  df-minusg 17426  df-mulg 17541  df-subg 17591  df-ghm 17658  df-cmn 18195  df-mgp 18490  df-ur 18502  df-ring 18549  df-cring 18550  df-rnghom 18715  df-subrg 18778  df-nzr 19258  df-cnfld 19747  df-zring 19819  df-ringc 42005
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator