MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ssindif0 Structured version   Visualization version   Unicode version

Theorem ssindif0 4031
Description: Subclass expressed in terms of intersection with difference from the universal class. (Contributed by NM, 17-Sep-2003.)
Assertion
Ref Expression
ssindif0  |-  ( A 
C_  B  <->  ( A  i^i  ( _V  \  B
) )  =  (/) )

Proof of Theorem ssindif0
StepHypRef Expression
1 disj2 4024 . 2  |-  ( ( A  i^i  ( _V 
\  B ) )  =  (/)  <->  A  C_  ( _V 
\  ( _V  \  B ) ) )
2 ddif 3742 . . 3  |-  ( _V 
\  ( _V  \  B ) )  =  B
32sseq2i 3630 . 2  |-  ( A 
C_  ( _V  \ 
( _V  \  B
) )  <->  A  C_  B
)
41, 3bitr2i 265 1  |-  ( A 
C_  B  <->  ( A  i^i  ( _V  \  B
) )  =  (/) )
Colors of variables: wff setvar class
Syntax hints:    <-> wb 196    = wceq 1483   _Vcvv 3200    \ cdif 3571    i^i cin 3573    C_ wss 3574   (/)c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916
This theorem is referenced by:  setind  8610
  Copyright terms: Public domain W3C validator