| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ssindif0 | Structured version Visualization version GIF version | ||
| Description: Subclass expressed in terms of intersection with difference from the universal class. (Contributed by NM, 17-Sep-2003.) |
| Ref | Expression |
|---|---|
| ssindif0 | ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ (V ∖ 𝐵)) = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disj2 4024 | . 2 ⊢ ((𝐴 ∩ (V ∖ 𝐵)) = ∅ ↔ 𝐴 ⊆ (V ∖ (V ∖ 𝐵))) | |
| 2 | ddif 3742 | . . 3 ⊢ (V ∖ (V ∖ 𝐵)) = 𝐵 | |
| 3 | 2 | sseq2i 3630 | . 2 ⊢ (𝐴 ⊆ (V ∖ (V ∖ 𝐵)) ↔ 𝐴 ⊆ 𝐵) |
| 4 | 1, 3 | bitr2i 265 | 1 ⊢ (𝐴 ⊆ 𝐵 ↔ (𝐴 ∩ (V ∖ 𝐵)) = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 196 = wceq 1483 Vcvv 3200 ∖ cdif 3571 ∩ cin 3573 ⊆ wss 3574 ∅c0 3915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-v 3202 df-dif 3577 df-in 3581 df-ss 3588 df-nul 3916 |
| This theorem is referenced by: setind 8610 |
| Copyright terms: Public domain | W3C validator |