MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  sspred Structured version   Visualization version   Unicode version

Theorem sspred 5688
Description: Another subset/predecessor class relationship. (Contributed by Scott Fenton, 6-Feb-2011.)
Assertion
Ref Expression
sspred  |-  ( ( B  C_  A  /\  Pred ( R ,  A ,  X )  C_  B
)  ->  Pred ( R ,  A ,  X
)  =  Pred ( R ,  B ,  X ) )

Proof of Theorem sspred
StepHypRef Expression
1 sseqin2 3817 . 2  |-  ( B 
C_  A  <->  ( A  i^i  B )  =  B )
2 df-pred 5680 . . . 4  |-  Pred ( R ,  A ,  X )  =  ( A  i^i  ( `' R " { X } ) )
32sseq1i 3629 . . 3  |-  ( Pred ( R ,  A ,  X )  C_  B  <->  ( A  i^i  ( `' R " { X } ) )  C_  B )
4 df-ss 3588 . . 3  |-  ( ( A  i^i  ( `' R " { X } ) )  C_  B 
<->  ( ( A  i^i  ( `' R " { X } ) )  i^i 
B )  =  ( A  i^i  ( `' R " { X } ) ) )
5 in32 3825 . . . 4  |-  ( ( A  i^i  ( `' R " { X } ) )  i^i 
B )  =  ( ( A  i^i  B
)  i^i  ( `' R " { X }
) )
65eqeq1i 2627 . . 3  |-  ( ( ( A  i^i  ( `' R " { X } ) )  i^i 
B )  =  ( A  i^i  ( `' R " { X } ) )  <->  ( ( A  i^i  B )  i^i  ( `' R " { X } ) )  =  ( A  i^i  ( `' R " { X } ) ) )
73, 4, 63bitri 286 . 2  |-  ( Pred ( R ,  A ,  X )  C_  B  <->  ( ( A  i^i  B
)  i^i  ( `' R " { X }
) )  =  ( A  i^i  ( `' R " { X } ) ) )
8 ineq1 3807 . . . . . 6  |-  ( ( A  i^i  B )  =  B  ->  (
( A  i^i  B
)  i^i  ( `' R " { X }
) )  =  ( B  i^i  ( `' R " { X } ) ) )
98eqeq1d 2624 . . . . 5  |-  ( ( A  i^i  B )  =  B  ->  (
( ( A  i^i  B )  i^i  ( `' R " { X } ) )  =  ( A  i^i  ( `' R " { X } ) )  <->  ( B  i^i  ( `' R " { X } ) )  =  ( A  i^i  ( `' R " { X } ) ) ) )
109biimpa 501 . . . 4  |-  ( ( ( A  i^i  B
)  =  B  /\  ( ( A  i^i  B )  i^i  ( `' R " { X } ) )  =  ( A  i^i  ( `' R " { X } ) ) )  ->  ( B  i^i  ( `' R " { X } ) )  =  ( A  i^i  ( `' R " { X } ) ) )
11 df-pred 5680 . . . 4  |-  Pred ( R ,  B ,  X )  =  ( B  i^i  ( `' R " { X } ) )
1210, 11, 23eqtr4g 2681 . . 3  |-  ( ( ( A  i^i  B
)  =  B  /\  ( ( A  i^i  B )  i^i  ( `' R " { X } ) )  =  ( A  i^i  ( `' R " { X } ) ) )  ->  Pred ( R ,  B ,  X )  =  Pred ( R ,  A ,  X )
)
1312eqcomd 2628 . 2  |-  ( ( ( A  i^i  B
)  =  B  /\  ( ( A  i^i  B )  i^i  ( `' R " { X } ) )  =  ( A  i^i  ( `' R " { X } ) ) )  ->  Pred ( R ,  A ,  X )  =  Pred ( R ,  B ,  X )
)
141, 7, 13syl2anb 496 1  |-  ( ( B  C_  A  /\  Pred ( R ,  A ,  X )  C_  B
)  ->  Pred ( R ,  A ,  X
)  =  Pred ( R ,  B ,  X ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    i^i cin 3573    C_ wss 3574   {csn 4177   `'ccnv 5113   "cima 5117   Predcpred 5679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-in 3581  df-ss 3588  df-pred 5680
This theorem is referenced by:  frmin  31739
  Copyright terms: Public domain W3C validator