Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frmin Structured version   Visualization version   Unicode version

Theorem frmin 31739
Description: Every (possibly proper) subclass of a class  A with a founded, set-like relation  R has a minimal element. Lemma 4.3 of Don Monk's notes for Advanced Set Theory, which can be found at http://euclid.colorado.edu/~monkd/settheory. This is a very strong generalization of tz6.26 5711 and tz7.5 5744. (Contributed by Scott Fenton, 4-Feb-2011.) (Revised by Mario Carneiro, 26-Jun-2015.)
Assertion
Ref Expression
frmin  |-  ( ( ( R  Fr  A  /\  R Se  A )  /\  ( B  C_  A  /\  B  =/=  (/) ) )  ->  E. y  e.  B  Pred ( R ,  B ,  y )  =  (/) )
Distinct variable groups:    y, B    y, R
Allowed substitution hint:    A( y)

Proof of Theorem frmin
Dummy variables  b 
c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 frss 5081 . . . 4  |-  ( B 
C_  A  ->  ( R  Fr  A  ->  R  Fr  B ) )
2 sess2 5083 . . . 4  |-  ( B 
C_  A  ->  ( R Se  A  ->  R Se  B
) )
31, 2anim12d 586 . . 3  |-  ( B 
C_  A  ->  (
( R  Fr  A  /\  R Se  A )  ->  ( R  Fr  B  /\  R Se  B )
) )
4 n0 3931 . . . 4  |-  ( B  =/=  (/)  <->  E. b  b  e.  B )
5 predeq3 5684 . . . . . . . . . . 11  |-  ( y  =  b  ->  Pred ( R ,  B , 
y )  =  Pred ( R ,  B , 
b ) )
65eqeq1d 2624 . . . . . . . . . 10  |-  ( y  =  b  ->  ( Pred ( R ,  B ,  y )  =  (/) 
<-> 
Pred ( R ,  B ,  b )  =  (/) ) )
76rspcev 3309 . . . . . . . . 9  |-  ( ( b  e.  B  /\  Pred ( R ,  B ,  b )  =  (/) )  ->  E. y  e.  B  Pred ( R ,  B ,  y )  =  (/) )
87ex 450 . . . . . . . 8  |-  ( b  e.  B  ->  ( Pred ( R ,  B ,  b )  =  (/)  ->  E. y  e.  B  Pred ( R ,  B ,  y )  =  (/) ) )
98adantl 482 . . . . . . 7  |-  ( ( ( R  Fr  B  /\  R Se  B )  /\  b  e.  B
)  ->  ( Pred ( R ,  B , 
b )  =  (/)  ->  E. y  e.  B  Pred ( R ,  B ,  y )  =  (/) ) )
10 setlikespec 5701 . . . . . . . . . . 11  |-  ( ( b  e.  B  /\  R Se  B )  ->  Pred ( R ,  B , 
b )  e.  _V )
11 trpredpred 31728 . . . . . . . . . . . . 13  |-  ( Pred ( R ,  B ,  b )  e. 
_V  ->  Pred ( R ,  B ,  b )  C_ 
TrPred ( R ,  B ,  b ) )
12 ssn0 3976 . . . . . . . . . . . . . 14  |-  ( (
Pred ( R ,  B ,  b )  C_ 
TrPred ( R ,  B ,  b )  /\  Pred ( R ,  B ,  b )  =/=  (/) )  ->  TrPred ( R ,  B ,  b )  =/=  (/) )
1312ex 450 . . . . . . . . . . . . 13  |-  ( Pred ( R ,  B ,  b )  C_  TrPred ( R ,  B , 
b )  ->  ( Pred ( R ,  B ,  b )  =/=  (/)  ->  TrPred ( R ,  B ,  b )  =/=  (/) ) )
1411, 13syl 17 . . . . . . . . . . . 12  |-  ( Pred ( R ,  B ,  b )  e. 
_V  ->  ( Pred ( R ,  B , 
b )  =/=  (/)  ->  TrPred ( R ,  B ,  b )  =/=  (/) ) )
15 trpredss 31729 . . . . . . . . . . . 12  |-  ( Pred ( R ,  B ,  b )  e. 
_V  ->  TrPred ( R ,  B ,  b )  C_  B )
1614, 15jctild 566 . . . . . . . . . . 11  |-  ( Pred ( R ,  B ,  b )  e. 
_V  ->  ( Pred ( R ,  B , 
b )  =/=  (/)  ->  ( TrPred ( R ,  B ,  b )  C_  B  /\  TrPred ( R ,  B ,  b )  =/=  (/) ) ) )
1710, 16syl 17 . . . . . . . . . 10  |-  ( ( b  e.  B  /\  R Se  B )  ->  ( Pred ( R ,  B ,  b )  =/=  (/)  ->  ( TrPred ( R ,  B ,  b )  C_  B  /\  TrPred ( R ,  B , 
b )  =/=  (/) ) ) )
1817adantr 481 . . . . . . . . 9  |-  ( ( ( b  e.  B  /\  R Se  B )  /\  R  Fr  B
)  ->  ( Pred ( R ,  B , 
b )  =/=  (/)  ->  ( TrPred ( R ,  B ,  b )  C_  B  /\  TrPred ( R ,  B ,  b )  =/=  (/) ) ) )
19 trpredex 31737 . . . . . . . . . . 11  |-  TrPred ( R ,  B ,  b )  e.  _V
20 sseq1 3626 . . . . . . . . . . . . . 14  |-  ( c  =  TrPred ( R ,  B ,  b )  ->  ( c  C_  B  <->  TrPred ( R ,  B , 
b )  C_  B
) )
21 neeq1 2856 . . . . . . . . . . . . . 14  |-  ( c  =  TrPred ( R ,  B ,  b )  ->  ( c  =/=  (/)  <->  TrPred ( R ,  B ,  b )  =/=  (/) ) )
2220, 21anbi12d 747 . . . . . . . . . . . . 13  |-  ( c  =  TrPred ( R ,  B ,  b )  ->  ( ( c  C_  B  /\  c  =/=  (/) )  <->  ( TrPred ( R ,  B , 
b )  C_  B  /\  TrPred ( R ,  B ,  b )  =/=  (/) ) ) )
23 predeq2 5683 . . . . . . . . . . . . . . 15  |-  ( c  =  TrPred ( R ,  B ,  b )  ->  Pred ( R , 
c ,  y )  =  Pred ( R ,  TrPred ( R ,  B ,  b ) ,  y ) )
2423eqeq1d 2624 . . . . . . . . . . . . . 14  |-  ( c  =  TrPred ( R ,  B ,  b )  ->  ( Pred ( R ,  c ,  y )  =  (/)  <->  Pred ( R ,  TrPred ( R ,  B ,  b ) ,  y )  =  (/) ) )
2524rexeqbi1dv 3147 . . . . . . . . . . . . 13  |-  ( c  =  TrPred ( R ,  B ,  b )  ->  ( E. y  e.  c  Pred ( R , 
c ,  y )  =  (/)  <->  E. y  e.  TrPred  ( R ,  B , 
b ) Pred ( R ,  TrPred ( R ,  B ,  b ) ,  y )  =  (/) ) )
2622, 25imbi12d 334 . . . . . . . . . . . 12  |-  ( c  =  TrPred ( R ,  B ,  b )  ->  ( ( ( c 
C_  B  /\  c  =/=  (/) )  ->  E. y  e.  c  Pred ( R ,  c ,  y )  =  (/) )  <->  ( ( TrPred ( R ,  B ,  b )  C_  B  /\  TrPred ( R ,  B ,  b )  =/=  (/) )  ->  E. y  e.  TrPred  ( R ,  B ,  b ) Pred ( R ,  TrPred ( R ,  B , 
b ) ,  y )  =  (/) ) ) )
2726imbi2d 330 . . . . . . . . . . 11  |-  ( c  =  TrPred ( R ,  B ,  b )  ->  ( ( R  Fr  B  ->  ( ( c 
C_  B  /\  c  =/=  (/) )  ->  E. y  e.  c  Pred ( R ,  c ,  y )  =  (/) ) )  <-> 
( R  Fr  B  ->  ( ( TrPred ( R ,  B ,  b )  C_  B  /\  TrPred ( R ,  B , 
b )  =/=  (/) )  ->  E. y  e.  TrPred  ( R ,  B ,  b ) Pred ( R ,  TrPred ( R ,  B ,  b ) ,  y )  =  (/) ) ) ) )
28 dffr4 5696 . . . . . . . . . . . 12  |-  ( R  Fr  B  <->  A. c
( ( c  C_  B  /\  c  =/=  (/) )  ->  E. y  e.  c  Pred ( R ,  c ,  y )  =  (/) ) )
29 sp 2053 . . . . . . . . . . . 12  |-  ( A. c ( ( c 
C_  B  /\  c  =/=  (/) )  ->  E. y  e.  c  Pred ( R ,  c ,  y )  =  (/) )  -> 
( ( c  C_  B  /\  c  =/=  (/) )  ->  E. y  e.  c  Pred ( R ,  c ,  y )  =  (/) ) )
3028, 29sylbi 207 . . . . . . . . . . 11  |-  ( R  Fr  B  ->  (
( c  C_  B  /\  c  =/=  (/) )  ->  E. y  e.  c  Pred ( R ,  c ,  y )  =  (/) ) )
3119, 27, 30vtocl 3259 . . . . . . . . . 10  |-  ( R  Fr  B  ->  (
( TrPred ( R ,  B ,  b )  C_  B  /\  TrPred ( R ,  B ,  b )  =/=  (/) )  ->  E. y  e.  TrPred  ( R ,  B ,  b ) Pred ( R ,  TrPred ( R ,  B ,  b ) ,  y )  =  (/) ) )
3210, 15syl 17 . . . . . . . . . . 11  |-  ( ( b  e.  B  /\  R Se  B )  ->  TrPred ( R ,  B ,  b )  C_  B )
3332adantr 481 . . . . . . . . . . . . . . 15  |-  ( ( ( b  e.  B  /\  R Se  B )  /\  y  e.  TrPred ( R ,  B ,  b ) )  ->  TrPred ( R ,  B ,  b )  C_  B )
34 trpredtr 31730 . . . . . . . . . . . . . . . 16  |-  ( ( b  e.  B  /\  R Se  B )  ->  (
y  e.  TrPred ( R ,  B ,  b )  ->  Pred ( R ,  B ,  y )  C_  TrPred ( R ,  B ,  b ) ) )
3534imp 445 . . . . . . . . . . . . . . 15  |-  ( ( ( b  e.  B  /\  R Se  B )  /\  y  e.  TrPred ( R ,  B ,  b ) )  ->  Pred ( R ,  B , 
y )  C_  TrPred ( R ,  B ,  b ) )
36 sspred 5688 . . . . . . . . . . . . . . 15  |-  ( (
TrPred ( R ,  B ,  b )  C_  B  /\  Pred ( R ,  B ,  y )  C_ 
TrPred ( R ,  B ,  b ) )  ->  Pred ( R ,  B ,  y )  =  Pred ( R ,  TrPred ( R ,  B ,  b ) ,  y ) )
3733, 35, 36syl2anc 693 . . . . . . . . . . . . . 14  |-  ( ( ( b  e.  B  /\  R Se  B )  /\  y  e.  TrPred ( R ,  B ,  b ) )  ->  Pred ( R ,  B , 
y )  =  Pred ( R ,  TrPred ( R ,  B ,  b ) ,  y ) )
3837eqeq1d 2624 . . . . . . . . . . . . 13  |-  ( ( ( b  e.  B  /\  R Se  B )  /\  y  e.  TrPred ( R ,  B ,  b ) )  ->  ( Pred ( R ,  B ,  y )  =  (/) 
<-> 
Pred ( R ,  TrPred ( R ,  B ,  b ) ,  y )  =  (/) ) )
3938biimprd 238 . . . . . . . . . . . 12  |-  ( ( ( b  e.  B  /\  R Se  B )  /\  y  e.  TrPred ( R ,  B ,  b ) )  ->  ( Pred ( R ,  TrPred ( R ,  B , 
b ) ,  y )  =  (/)  ->  Pred ( R ,  B , 
y )  =  (/) ) )
4039reximdva 3017 . . . . . . . . . . 11  |-  ( ( b  e.  B  /\  R Se  B )  ->  ( E. y  e.  TrPred  ( R ,  B ,  b ) Pred ( R ,  TrPred ( R ,  B ,  b ) ,  y )  =  (/)  ->  E. y  e.  TrPred  ( R ,  B , 
b ) Pred ( R ,  B , 
y )  =  (/) ) )
41 ssrexv 3667 . . . . . . . . . . 11  |-  ( TrPred ( R ,  B , 
b )  C_  B  ->  ( E. y  e. 
TrPred  ( R ,  B ,  b ) Pred ( R ,  B ,  y )  =  (/)  ->  E. y  e.  B  Pred ( R ,  B ,  y )  =  (/) ) )
4232, 40, 41sylsyld 61 . . . . . . . . . 10  |-  ( ( b  e.  B  /\  R Se  B )  ->  ( E. y  e.  TrPred  ( R ,  B ,  b ) Pred ( R ,  TrPred ( R ,  B ,  b ) ,  y )  =  (/)  ->  E. y  e.  B  Pred ( R ,  B ,  y )  =  (/) ) )
4331, 42sylan9r 690 . . . . . . . . 9  |-  ( ( ( b  e.  B  /\  R Se  B )  /\  R  Fr  B
)  ->  ( ( TrPred ( R ,  B ,  b )  C_  B  /\  TrPred ( R ,  B ,  b )  =/=  (/) )  ->  E. y  e.  B  Pred ( R ,  B ,  y )  =  (/) ) )
4418, 43syld 47 . . . . . . . 8  |-  ( ( ( b  e.  B  /\  R Se  B )  /\  R  Fr  B
)  ->  ( Pred ( R ,  B , 
b )  =/=  (/)  ->  E. y  e.  B  Pred ( R ,  B ,  y )  =  (/) ) )
4544an31s 848 . . . . . . 7  |-  ( ( ( R  Fr  B  /\  R Se  B )  /\  b  e.  B
)  ->  ( Pred ( R ,  B , 
b )  =/=  (/)  ->  E. y  e.  B  Pred ( R ,  B ,  y )  =  (/) ) )
469, 45pm2.61dne 2880 . . . . . 6  |-  ( ( ( R  Fr  B  /\  R Se  B )  /\  b  e.  B
)  ->  E. y  e.  B  Pred ( R ,  B ,  y )  =  (/) )
4746ex 450 . . . . 5  |-  ( ( R  Fr  B  /\  R Se  B )  ->  (
b  e.  B  ->  E. y  e.  B  Pred ( R ,  B ,  y )  =  (/) ) )
4847exlimdv 1861 . . . 4  |-  ( ( R  Fr  B  /\  R Se  B )  ->  ( E. b  b  e.  B  ->  E. y  e.  B  Pred ( R ,  B ,  y )  =  (/) ) )
494, 48syl5bi 232 . . 3  |-  ( ( R  Fr  B  /\  R Se  B )  ->  ( B  =/=  (/)  ->  E. y  e.  B  Pred ( R ,  B ,  y )  =  (/) ) )
503, 49syl6com 37 . 2  |-  ( ( R  Fr  A  /\  R Se  A )  ->  ( B  C_  A  ->  ( B  =/=  (/)  ->  E. y  e.  B  Pred ( R ,  B ,  y )  =  (/) ) ) )
5150imp32 449 1  |-  ( ( ( R  Fr  A  /\  R Se  A )  /\  ( B  C_  A  /\  B  =/=  (/) ) )  ->  E. y  e.  B  Pred ( R ,  B ,  y )  =  (/) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384   A.wal 1481    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   E.wrex 2913   _Vcvv 3200    C_ wss 3574   (/)c0 3915    Fr wfr 5070   Se wse 5071   Predcpred 5679   TrPredctrpred 31717
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-inf2 8538
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-se 5074  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-om 7066  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-trpred 31718
This theorem is referenced by:  frind  31740
  Copyright terms: Public domain W3C validator