| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sspwimp | Structured version Visualization version Unicode version | ||
| Description: If a class is a subclass of another class, then its power class is a subclass of that other class's power class. Left-to-right implication of Exercise 18 of [TakeutiZaring] p. 18. sspwimp 39154, using conventional notation, was translated from virtual deduction form, sspwimpVD 39155, using a translation program. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sspwimp |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3203 |
. . . . . . 7
| |
| 2 | 1 | a1i 11 |
. . . . . 6
|
| 3 | id 22 |
. . . . . . 7
| |
| 4 | id 22 |
. . . . . . . 8
| |
| 5 | elpwi 4168 |
. . . . . . . 8
| |
| 6 | 4, 5 | syl 17 |
. . . . . . 7
|
| 7 | sstr 3611 |
. . . . . . . 8
| |
| 8 | 7 | ancoms 469 |
. . . . . . 7
|
| 9 | 3, 6, 8 | syl2an 494 |
. . . . . 6
|
| 10 | 2, 9 | elpwgded 38780 |
. . . . . 6
|
| 11 | 2, 9, 10 | uun0.1 39005 |
. . . . 5
|
| 12 | 11 | ex 450 |
. . . 4
|
| 13 | 12 | alrimiv 1855 |
. . 3
|
| 14 | dfss2 3591 |
. . . 4
| |
| 15 | 14 | biimpri 218 |
. . 3
|
| 16 | 13, 15 | syl 17 |
. 2
|
| 17 | 16 | iin1 38788 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-in 3581 df-ss 3588 df-pw 4160 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |