Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sspwimp Structured version   Visualization version   Unicode version

Theorem sspwimp 39154
Description: If a class is a subclass of another class, then its power class is a subclass of that other class's power class. Left-to-right implication of Exercise 18 of [TakeutiZaring] p. 18. sspwimp 39154, using conventional notation, was translated from virtual deduction form, sspwimpVD 39155, using a translation program. (Contributed by Alan Sare, 23-Apr-2015.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sspwimp  |-  ( A 
C_  B  ->  ~P A  C_  ~P B )

Proof of Theorem sspwimp
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 vex 3203 . . . . . . 7  |-  x  e. 
_V
21a1i 11 . . . . . 6  |-  ( T. 
->  x  e.  _V )
3 id 22 . . . . . . 7  |-  ( A 
C_  B  ->  A  C_  B )
4 id 22 . . . . . . . 8  |-  ( x  e.  ~P A  ->  x  e.  ~P A
)
5 elpwi 4168 . . . . . . . 8  |-  ( x  e.  ~P A  ->  x  C_  A )
64, 5syl 17 . . . . . . 7  |-  ( x  e.  ~P A  ->  x  C_  A )
7 sstr 3611 . . . . . . . 8  |-  ( ( x  C_  A  /\  A  C_  B )  ->  x  C_  B )
87ancoms 469 . . . . . . 7  |-  ( ( A  C_  B  /\  x  C_  A )  ->  x  C_  B )
93, 6, 8syl2an 494 . . . . . 6  |-  ( ( A  C_  B  /\  x  e.  ~P A
)  ->  x  C_  B
)
102, 9elpwgded 38780 . . . . . 6  |-  ( ( T.  /\  ( A 
C_  B  /\  x  e.  ~P A ) )  ->  x  e.  ~P B )
112, 9, 10uun0.1 39005 . . . . 5  |-  ( ( A  C_  B  /\  x  e.  ~P A
)  ->  x  e.  ~P B )
1211ex 450 . . . 4  |-  ( A 
C_  B  ->  (
x  e.  ~P A  ->  x  e.  ~P B
) )
1312alrimiv 1855 . . 3  |-  ( A 
C_  B  ->  A. x
( x  e.  ~P A  ->  x  e.  ~P B ) )
14 dfss2 3591 . . . 4  |-  ( ~P A  C_  ~P B  <->  A. x ( x  e. 
~P A  ->  x  e.  ~P B ) )
1514biimpri 218 . . 3  |-  ( A. x ( x  e. 
~P A  ->  x  e.  ~P B )  ->  ~P A  C_  ~P B
)
1613, 15syl 17 . 2  |-  ( A 
C_  B  ->  ~P A  C_  ~P B )
1716iin1 38788 1  |-  ( A 
C_  B  ->  ~P A  C_  ~P B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384   A.wal 1481   T. wtru 1484    e. wcel 1990   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-in 3581  df-ss 3588  df-pw 4160
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator