| Mathbox for Alan Sare |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sspwimpALT2 | Structured version Visualization version Unicode version | ||
| Description: If a class is a subclass of another class, then its power class is a subclass of that other class's power class. Left-to-right implication of Exercise 18 of [TakeutiZaring] p. 18. Proof derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in http://us.metamath.org/other/completeusersproof/sspwimpaltvd.html. (Contributed by Alan Sare, 11-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| sspwimpALT2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex 3203 |
. . . 4
| |
| 2 | elpwi 4168 |
. . . . 5
| |
| 3 | id 22 |
. . . . 5
| |
| 4 | 2, 3 | sylan9ssr 3617 |
. . . 4
|
| 5 | elpwg 4166 |
. . . . 5
| |
| 6 | 5 | biimpar 502 |
. . . 4
|
| 7 | 1, 4, 6 | sylancr 695 |
. . 3
|
| 8 | 7 | ex 450 |
. 2
|
| 9 | 8 | ssrdv 3609 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-in 3581 df-ss 3588 df-pw 4160 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |