Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sspwimpALT2 Structured version   Visualization version   Unicode version

Theorem sspwimpALT2 39164
Description: If a class is a subclass of another class, then its power class is a subclass of that other class's power class. Left-to-right implication of Exercise 18 of [TakeutiZaring] p. 18. Proof derived by completeusersproof.c from User's Proof in VirtualDeductionProofs.txt. The User's Proof in html format is displayed in http://us.metamath.org/other/completeusersproof/sspwimpaltvd.html. (Contributed by Alan Sare, 11-Sep-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
sspwimpALT2  |-  ( A 
C_  B  ->  ~P A  C_  ~P B )

Proof of Theorem sspwimpALT2
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 vex 3203 . . . 4  |-  x  e. 
_V
2 elpwi 4168 . . . . 5  |-  ( x  e.  ~P A  ->  x  C_  A )
3 id 22 . . . . 5  |-  ( A 
C_  B  ->  A  C_  B )
42, 3sylan9ssr 3617 . . . 4  |-  ( ( A  C_  B  /\  x  e.  ~P A
)  ->  x  C_  B
)
5 elpwg 4166 . . . . 5  |-  ( x  e.  _V  ->  (
x  e.  ~P B  <->  x 
C_  B ) )
65biimpar 502 . . . 4  |-  ( ( x  e.  _V  /\  x  C_  B )  ->  x  e.  ~P B
)
71, 4, 6sylancr 695 . . 3  |-  ( ( A  C_  B  /\  x  e.  ~P A
)  ->  x  e.  ~P B )
87ex 450 . 2  |-  ( A 
C_  B  ->  (
x  e.  ~P A  ->  x  e.  ~P B
) )
98ssrdv 3609 1  |-  ( A 
C_  B  ->  ~P A  C_  ~P B )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    e. wcel 1990   _Vcvv 3200    C_ wss 3574   ~Pcpw 4158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-v 3202  df-in 3581  df-ss 3588  df-pw 4160
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator