| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl233anc | Structured version Visualization version Unicode version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl12anc.1 |
|
| syl12anc.2 |
|
| syl12anc.3 |
|
| syl22anc.4 |
|
| syl23anc.5 |
|
| syl33anc.6 |
|
| syl133anc.7 |
|
| syl233anc.8 |
|
| syl233anc.9 |
|
| Ref | Expression |
|---|---|
| syl233anc |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl12anc.1 |
. . 3
| |
| 2 | syl12anc.2 |
. . 3
| |
| 3 | 1, 2 | jca 554 |
. 2
|
| 4 | syl12anc.3 |
. 2
| |
| 5 | syl22anc.4 |
. 2
| |
| 6 | syl23anc.5 |
. 2
| |
| 7 | syl33anc.6 |
. 2
| |
| 8 | syl133anc.7 |
. 2
| |
| 9 | syl233anc.8 |
. 2
| |
| 10 | syl233anc.9 |
. 2
| |
| 11 | 3, 4, 5, 6, 7, 8, 9, 10 | syl133anc 1349 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 |
| This theorem is referenced by: br8d 29422 2llnjN 34853 cdleme16b 35566 cdleme18d 35582 cdleme19d 35594 cdleme20bN 35598 cdleme20l1 35608 cdleme22cN 35630 cdleme22eALTN 35633 cdleme22f 35634 cdlemg33c0 35990 cdlemk5 36124 cdlemk5u 36149 cdlemky 36214 cdlemkyyN 36250 |
| Copyright terms: Public domain | W3C validator |