![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl233anc | Structured version Visualization version Unicode version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl12anc.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl12anc.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl12anc.3 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl22anc.4 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl23anc.5 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl33anc.6 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl133anc.7 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl233anc.8 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl233anc.9 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl233anc |
![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl12anc.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | syl12anc.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 1, 2 | jca 554 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | syl12anc.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
5 | syl22anc.4 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
6 | syl23anc.5 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
7 | syl33anc.6 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
8 | syl133anc.7 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
9 | syl233anc.8 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() | |
10 | syl233anc.9 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
11 | 3, 4, 5, 6, 7, 8, 9, 10 | syl133anc 1349 |
1
![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 |
This theorem is referenced by: br8d 29422 2llnjN 34853 cdleme16b 35566 cdleme18d 35582 cdleme19d 35594 cdleme20bN 35598 cdleme20l1 35608 cdleme22cN 35630 cdleme22eALTN 35633 cdleme22f 35634 cdlemg33c0 35990 cdlemk5 36124 cdlemk5u 36149 cdlemky 36214 cdlemkyyN 36250 |
Copyright terms: Public domain | W3C validator |