Proof of Theorem cdleme18d
Step | Hyp | Ref
| Expression |
1 | | eleq1 2689 |
. . . . . . . 8
 
   |
2 | | breq1 4656 |
. . . . . . . . 9
 
   |
3 | 2 | notbid 308 |
. . . . . . . 8
 
   |
4 | 1, 3 | anbi12d 747 |
. . . . . . 7
         |
5 | 4 | 3anbi1d 1403 |
. . . . . 6
     
   
 
   
     |
6 | 5 | 3anbi2d 1404 |
. . . . 5
      
       
    
  
 
   
            
       
    
  
 
   
           |
7 | | simp11 1091 |
. . . . . . 7
     
       
    
  
 
   
            |
8 | | simp21 1094 |
. . . . . . 7
     
       
    
  
 
   
            |
9 | | simp13l 1176 |
. . . . . . 7
     
       
    
  
 
   
          |
10 | | simp22 1095 |
. . . . . . 7
     
       
    
  
 
   
            |
11 | | simp322 1212 |
. . . . . . 7
     
       
    
  
 
   
       
    |
12 | | cdleme18d.l |
. . . . . . . 8
     |
13 | | cdleme18d.j |
. . . . . . . 8
     |
14 | | cdleme18d.m |
. . . . . . . 8
     |
15 | | cdleme18d.a |
. . . . . . . 8
     |
16 | | cdleme18d.h |
. . . . . . . 8
     |
17 | | cdleme18d.u |
. . . . . . . 8
  
  |
18 | | cdleme18d.f |
. . . . . . . 8
  
   
    |
19 | | eqid 2622 |
. . . . . . . 8
      
     
   
    |
20 | 12, 13, 14, 15, 16, 17, 18, 19 | cdleme17d1 35576 |
. . . . . . 7
      

       
   
     |
21 | 7, 8, 9, 10, 11, 20 | syl131anc 1339 |
. . . . . 6
     
       
    
  
 
   
           
        |
22 | | simp23 1096 |
. . . . . . 7
     
       
    
  
 
   
            |
23 | | simp323 1213 |
. . . . . . 7
     
       
    
  
 
   
       
    |
24 | | cdleme18d.d |
. . . . . . . 8
  
   
    |
25 | | eqid 2622 |
. . . . . . . 8
      
     
   
    |
26 | 12, 13, 14, 15, 16, 17, 24, 25 | cdleme17d1 35576 |
. . . . . . 7
      

       
   
     |
27 | 7, 8, 9, 22, 23, 26 | syl131anc 1339 |
. . . . . 6
     
       
    
  
 
   
           
        |
28 | 21, 27 | eqtr4d 2659 |
. . . . 5
     
       
    
  
 
   
           
            
     |
29 | 6, 28 | syl6bi 243 |
. . . 4
      
       
    
  
 
   
           
            
      |
30 | | cdleme18d.g |
. . . . . 6
  
   
    |
31 | | cdleme18d.e |
. . . . . 6
  
   
    |
32 | 30, 31 | eqeq12i 2636 |
. . . . 5

   
            
     |
33 | | oveq1 6657 |
. . . . . . . . 9
       |
34 | 33 | oveq1d 6665 |
. . . . . . . 8
   
       |
35 | 34 | oveq2d 6666 |
. . . . . . 7
               |
36 | 35 | oveq2d 6666 |
. . . . . 6
   
   
     
   
     |
37 | | oveq1 6657 |
. . . . . . . . 9
       |
38 | 37 | oveq1d 6665 |
. . . . . . . 8
   
       |
39 | 38 | oveq2d 6666 |
. . . . . . 7
               |
40 | 39 | oveq2d 6666 |
. . . . . 6
   
   
     
   
     |
41 | 36, 40 | eqeq12d 2637 |
. . . . 5
    
   
     
   
  
   
            
      |
42 | 32, 41 | syl5bb 272 |
. . . 4
 
   
            
      |
43 | 29, 42 | sylibrd 249 |
. . 3
      
       
    
  
 
   
           |
44 | 43 | com12 32 |
. 2
     
       
    
  
 
   
        
   |
45 | | eleq1 2689 |
. . . . . . . 8
 
   |
46 | | breq1 4656 |
. . . . . . . . 9
 
   |
47 | 46 | notbid 308 |
. . . . . . . 8
 
   |
48 | 45, 47 | anbi12d 747 |
. . . . . . 7
         |
49 | 48 | 3anbi1d 1403 |
. . . . . 6
     
   
 
   
     |
50 | | breq1 4656 |
. . . . . . . 8
   
     |
51 | 50 | 3anbi1d 1403 |
. . . . . . 7
    
 
     
 
      |
52 | 51 | 3anbi2d 1404 |
. . . . . 6
     
 
   
      
   
 
     
        |
53 | 49, 52 | 3anbi23d 1402 |
. . . . 5
      
       
    
  
 
   
            
       
    
  
 
   
           |
54 | | simp11l 1172 |
. . . . . . 7
     
       
    
  
 
   
          |
55 | | simp11r 1173 |
. . . . . . 7
     
       
    
  
 
   
          |
56 | | simp12 1092 |
. . . . . . 7
     
       
    
  
 
   
            |
57 | | simp21 1094 |
. . . . . . 7
     
       
    
  
 
   
            |
58 | | simp22 1095 |
. . . . . . 7
     
       
    
  
 
   
            |
59 | | simp31 1097 |
. . . . . . 7
     
       
    
  
 
   
          |
60 | | simp322 1212 |
. . . . . . 7
     
       
    
  
 
   
       
    |
61 | | simp33 1099 |
. . . . . . 7
     
       
    
  
 
   
       

        |
62 | | eqid 2622 |
. . . . . . . 8
      
     
   
    |
63 | 12, 13, 14, 15, 16, 17, 18, 62 | cdleme18c 35580 |
. . . . . . 7
       
    
   
         
   
     |
64 | 54, 55, 56, 57, 58, 59, 60, 61, 63 | syl233anc 1355 |
. . . . . 6
     
       
    
  
 
   
           
        |
65 | | simp23 1096 |
. . . . . . 7
     
       
    
  
 
   
            |
66 | | simp323 1213 |
. . . . . . 7
     
       
    
  
 
   
       
    |
67 | | eqid 2622 |
. . . . . . . 8
      
     
   
    |
68 | 12, 13, 14, 15, 16, 17, 24, 67 | cdleme18c 35580 |
. . . . . . 7
       
    
   
         
   
     |
69 | 54, 55, 56, 57, 65, 59, 66, 61, 68 | syl233anc 1355 |
. . . . . 6
     
       
    
  
 
   
           
        |
70 | 64, 69 | eqtr4d 2659 |
. . . . 5
     
       
    
  
 
   
           
            
     |
71 | 53, 70 | syl6bi 243 |
. . . 4
      
       
    
  
 
   
           
            
      |
72 | | oveq1 6657 |
. . . . . . . . 9
       |
73 | 72 | oveq1d 6665 |
. . . . . . . 8
   
       |
74 | 73 | oveq2d 6666 |
. . . . . . 7
               |
75 | 74 | oveq2d 6666 |
. . . . . 6
   
   
     
   
     |
76 | | oveq1 6657 |
. . . . . . . . 9
       |
77 | 76 | oveq1d 6665 |
. . . . . . . 8
   
       |
78 | 77 | oveq2d 6666 |
. . . . . . 7
               |
79 | 78 | oveq2d 6666 |
. . . . . 6
   
   
     
   
     |
80 | 75, 79 | eqeq12d 2637 |
. . . . 5
    
   
     
   
  
   
            
      |
81 | 32, 80 | syl5bb 272 |
. . . 4
 
   
            
      |
82 | 71, 81 | sylibrd 249 |
. . 3
      
       
    
  
 
   
           |
83 | 82 | com12 32 |
. 2
     
       
    
  
 
   
        
   |
84 | | simp11l 1172 |
. . 3
     
       
    
  
 
   
          |
85 | | simp321 1211 |
. . 3
     
       
    
  
 
   
            |
86 | | simp33 1099 |
. . 3
     
       
    
  
 
   
       

        |
87 | | simp12l 1174 |
. . 3
     
       
    
  
 
   
          |
88 | | simp13l 1176 |
. . 3
     
       
    
  
 
   
          |
89 | | simp31 1097 |
. . 3
     
       
    
  
 
   
          |
90 | | simp21l 1178 |
. . 3
     
       
    
  
 
   
          |
91 | | simp21r 1179 |
. . 3
     
       
    
  
 
   
       
  |
92 | 12, 13, 15 | cdleme0nex 35577 |
. . 3
  
    
       
 

   |
93 | 84, 85, 86, 87, 88, 89, 90, 91, 92 | syl332anc 1357 |
. 2
     
       
    
  
 
   
            |
94 | 44, 83, 93 | mpjaod 396 |
1
     
       
    
  
 
   
          |