Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme22f Structured version   Visualization version   Unicode version

Theorem cdleme22f 35634
Description: Part of proof of Lemma E in [Crawley] p. 113, 3rd paragraph, 6th and 7th lines on p. 115.  F,  N represent f(t), ft(s) respectively. If s  <_ t  \/ v, then ft(s)  <_ f(t)  \/ v. (Contributed by NM, 6-Dec-2012.)
Hypotheses
Ref Expression
cdleme22.l  |-  .<_  =  ( le `  K )
cdleme22.j  |-  .\/  =  ( join `  K )
cdleme22.m  |-  ./\  =  ( meet `  K )
cdleme22.a  |-  A  =  ( Atoms `  K )
cdleme22.h  |-  H  =  ( LHyp `  K
)
cdleme22f.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme22f.f  |-  F  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
cdleme22f.n  |-  N  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( S  .\/  T )  ./\  W )
) )
Assertion
Ref Expression
cdleme22f  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  N  .<_  ( F  .\/  V
) )

Proof of Theorem cdleme22f
StepHypRef Expression
1 cdleme22f.n . 2  |-  N  =  ( ( P  .\/  Q )  ./\  ( F  .\/  ( ( S  .\/  T )  ./\  W )
) )
2 simp11l 1172 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  K  e.  HL )
3 hllat 34650 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
42, 3syl 17 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  K  e.  Lat )
5 simp12l 1174 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  P  e.  A )
6 simp13l 1176 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  Q  e.  A )
7 eqid 2622 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
8 cdleme22.j . . . . . 6  |-  .\/  =  ( join `  K )
9 cdleme22.a . . . . . 6  |-  A  =  ( Atoms `  K )
107, 8, 9hlatjcl 34653 . . . . 5  |-  ( ( K  e.  HL  /\  P  e.  A  /\  Q  e.  A )  ->  ( P  .\/  Q
)  e.  ( Base `  K ) )
112, 5, 6, 10syl3anc 1326 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  ( P  .\/  Q )  e.  ( Base `  K
) )
12 simp11r 1173 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  W  e.  H )
13 simp22 1095 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  T  e.  A )
14 cdleme22.l . . . . . . 7  |-  .<_  =  ( le `  K )
15 cdleme22.m . . . . . . 7  |-  ./\  =  ( meet `  K )
16 cdleme22.h . . . . . . 7  |-  H  =  ( LHyp `  K
)
17 cdleme22f.u . . . . . . 7  |-  U  =  ( ( P  .\/  Q )  ./\  W )
18 cdleme22f.f . . . . . . 7  |-  F  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
1914, 8, 15, 9, 16, 17, 18, 7cdleme1b 35513 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  Q  e.  A  /\  T  e.  A ) )  ->  F  e.  ( Base `  K ) )
202, 12, 5, 6, 13, 19syl23anc 1333 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  F  e.  ( Base `  K
) )
21 simp21l 1178 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  S  e.  A )
227, 8, 9hlatjcl 34653 . . . . . . 7  |-  ( ( K  e.  HL  /\  S  e.  A  /\  T  e.  A )  ->  ( S  .\/  T
)  e.  ( Base `  K ) )
232, 21, 13, 22syl3anc 1326 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  ( S  .\/  T )  e.  ( Base `  K
) )
247, 16lhpbase 35284 . . . . . . 7  |-  ( W  e.  H  ->  W  e.  ( Base `  K
) )
2512, 24syl 17 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  W  e.  ( Base `  K
) )
267, 15latmcl 17052 . . . . . 6  |-  ( ( K  e.  Lat  /\  ( S  .\/  T )  e.  ( Base `  K
)  /\  W  e.  ( Base `  K )
)  ->  ( ( S  .\/  T )  ./\  W )  e.  ( Base `  K ) )
274, 23, 25, 26syl3anc 1326 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  (
( S  .\/  T
)  ./\  W )  e.  ( Base `  K
) )
287, 8latjcl 17051 . . . . 5  |-  ( ( K  e.  Lat  /\  F  e.  ( Base `  K )  /\  (
( S  .\/  T
)  ./\  W )  e.  ( Base `  K
) )  ->  ( F  .\/  ( ( S 
.\/  T )  ./\  W ) )  e.  (
Base `  K )
)
294, 20, 27, 28syl3anc 1326 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  ( F  .\/  ( ( S 
.\/  T )  ./\  W ) )  e.  (
Base `  K )
)
307, 14, 15latmle2 17077 . . . 4  |-  ( ( K  e.  Lat  /\  ( P  .\/  Q )  e.  ( Base `  K
)  /\  ( F  .\/  ( ( S  .\/  T )  ./\  W )
)  e.  ( Base `  K ) )  -> 
( ( P  .\/  Q )  ./\  ( F  .\/  ( ( S  .\/  T )  ./\  W )
) )  .<_  ( F 
.\/  ( ( S 
.\/  T )  ./\  W ) ) )
314, 11, 29, 30syl3anc 1326 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  (
( P  .\/  Q
)  ./\  ( F  .\/  ( ( S  .\/  T )  ./\  W )
) )  .<_  ( F 
.\/  ( ( S 
.\/  T )  ./\  W ) ) )
32 simp21 1094 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  ( S  e.  A  /\  -.  S  .<_  W ) )
33 simp3l 1089 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  S  =/=  T )
34 simp23l 1182 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  V  e.  A )
35 simp23r 1183 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  V  .<_  W )
36 simp3r 1090 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  S  .<_  ( T  .\/  V
) )
378, 9hlatjcom 34654 . . . . . . . 8  |-  ( ( K  e.  HL  /\  T  e.  A  /\  V  e.  A )  ->  ( T  .\/  V
)  =  ( V 
.\/  T ) )
382, 13, 34, 37syl3anc 1326 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  ( T  .\/  V )  =  ( V  .\/  T
) )
3936, 38breqtrd 4679 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  S  .<_  ( V  .\/  T
) )
40 hlcvl 34646 . . . . . . . 8  |-  ( K  e.  HL  ->  K  e.  CvLat )
412, 40syl 17 . . . . . . 7  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  K  e.  CvLat )
4214, 8, 9cvlatexch2 34624 . . . . . . 7  |-  ( ( K  e.  CvLat  /\  ( S  e.  A  /\  V  e.  A  /\  T  e.  A )  /\  S  =/=  T
)  ->  ( S  .<_  ( V  .\/  T
)  ->  V  .<_  ( S  .\/  T ) ) )
4341, 21, 34, 13, 33, 42syl131anc 1339 . . . . . 6  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  ( S  .<_  ( V  .\/  T )  ->  V  .<_  ( S  .\/  T ) ) )
4439, 43mpd 15 . . . . 5  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  V  .<_  ( S  .\/  T
) )
45 eqid 2622 . . . . . 6  |-  ( ( S  .\/  T ) 
./\  W )  =  ( ( S  .\/  T )  ./\  W )
4614, 8, 15, 9, 16, 45cdleme22aa 35627 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  S  =/=  T )  /\  ( V  e.  A  /\  V  .<_  W  /\  V  .<_  ( S  .\/  T ) ) )  ->  V  =  ( ( S  .\/  T )  ./\  W ) )
472, 12, 32, 13, 33, 34, 35, 44, 46syl233anc 1355 . . . 4  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  V  =  ( ( S 
.\/  T )  ./\  W ) )
4847oveq2d 6666 . . 3  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  ( F  .\/  V )  =  ( F  .\/  (
( S  .\/  T
)  ./\  W )
) )
4931, 48breqtrrd 4681 . 2  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  (
( P  .\/  Q
)  ./\  ( F  .\/  ( ( S  .\/  T )  ./\  W )
) )  .<_  ( F 
.\/  V ) )
501, 49syl5eqbr 4688 1  |-  ( ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( P  e.  A  /\  -.  P  .<_  W )  /\  ( Q  e.  A  /\  -.  Q  .<_  W ) )  /\  ( ( S  e.  A  /\  -.  S  .<_  W )  /\  T  e.  A  /\  ( V  e.  A  /\  V  .<_  W ) )  /\  ( S  =/= 
T  /\  S  .<_  ( T  .\/  V ) ) )  ->  N  .<_  ( F  .\/  V
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   meetcmee 16945   Latclat 17045   Atomscatm 34550   CvLatclc 34552   HLchlt 34637   LHypclh 35270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-lhyp 35274
This theorem is referenced by:  cdleme22f2  35635  cdleme26fALTN  35650  cdleme26f  35651
  Copyright terms: Public domain W3C validator