Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme20bN Structured version   Visualization version   Unicode version

Theorem cdleme20bN 35598
Description: Part of proof of Lemma E in [Crawley] p. 113, last paragraph on p. 114, second line.  D,  F,  Y,  G represent s2, f(s), t2, f(t). We show v  \/ s2 = v  \/ t2. (Contributed by NM, 15-Nov-2012.) (New usage is discouraged.)
Hypotheses
Ref Expression
cdleme19.l  |-  .<_  =  ( le `  K )
cdleme19.j  |-  .\/  =  ( join `  K )
cdleme19.m  |-  ./\  =  ( meet `  K )
cdleme19.a  |-  A  =  ( Atoms `  K )
cdleme19.h  |-  H  =  ( LHyp `  K
)
cdleme19.u  |-  U  =  ( ( P  .\/  Q )  ./\  W )
cdleme19.f  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
cdleme19.g  |-  G  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
cdleme19.d  |-  D  =  ( ( R  .\/  S )  ./\  W )
cdleme19.y  |-  Y  =  ( ( R  .\/  T )  ./\  W )
cdleme20.v  |-  V  =  ( ( S  .\/  T )  ./\  W )
Assertion
Ref Expression
cdleme20bN  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( V  .\/  D )  =  ( V  .\/  Y
) )

Proof of Theorem cdleme20bN
StepHypRef Expression
1 simp1l 1085 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  K  e.  HL )
2 hllat 34650 . . . . 5  |-  ( K  e.  HL  ->  K  e.  Lat )
31, 2syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  K  e.  Lat )
4 simp22l 1180 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  S  e.  A )
5 eqid 2622 . . . . . 6  |-  ( Base `  K )  =  (
Base `  K )
6 cdleme19.a . . . . . 6  |-  A  =  ( Atoms `  K )
75, 6atbase 34576 . . . . 5  |-  ( S  e.  A  ->  S  e.  ( Base `  K
) )
84, 7syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  S  e.  ( Base `  K
) )
9 simp21 1094 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  R  e.  A )
105, 6atbase 34576 . . . . 5  |-  ( R  e.  A  ->  R  e.  ( Base `  K
) )
119, 10syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  R  e.  ( Base `  K
) )
12 simp23l 1182 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  T  e.  A )
135, 6atbase 34576 . . . . 5  |-  ( T  e.  A  ->  T  e.  ( Base `  K
) )
1412, 13syl 17 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  T  e.  ( Base `  K
) )
15 cdleme19.j . . . . 5  |-  .\/  =  ( join `  K )
165, 15latj31 17099 . . . 4  |-  ( ( K  e.  Lat  /\  ( S  e.  ( Base `  K )  /\  R  e.  ( Base `  K )  /\  T  e.  ( Base `  K
) ) )  -> 
( ( S  .\/  R )  .\/  T )  =  ( ( T 
.\/  R )  .\/  S ) )
173, 8, 11, 14, 16syl13anc 1328 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  (
( S  .\/  R
)  .\/  T )  =  ( ( T 
.\/  R )  .\/  S ) )
1817oveq1d 6665 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  (
( ( S  .\/  R )  .\/  T ) 
./\  W )  =  ( ( ( T 
.\/  R )  .\/  S )  ./\  W )
)
19 simp1r 1086 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  W  e.  H )
20 simp22r 1181 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  -.  S  .<_  W )
21 simp31 1097 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  -.  S  .<_  ( P  .\/  Q ) )
22 simp33 1099 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  R  .<_  ( P  .\/  Q
) )
23 cdleme19.l . . . 4  |-  .<_  =  ( le `  K )
24 cdleme19.m . . . 4  |-  ./\  =  ( meet `  K )
25 cdleme19.h . . . 4  |-  H  =  ( LHyp `  K
)
26 cdleme19.u . . . 4  |-  U  =  ( ( P  .\/  Q )  ./\  W )
27 cdleme19.f . . . 4  |-  F  =  ( ( S  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  S )  ./\  W )
) )
28 cdleme19.g . . . 4  |-  G  =  ( ( T  .\/  U )  ./\  ( Q  .\/  ( ( P  .\/  T )  ./\  W )
) )
29 cdleme19.d . . . 4  |-  D  =  ( ( R  .\/  S )  ./\  W )
30 cdleme19.y . . . 4  |-  Y  =  ( ( R  .\/  T )  ./\  W )
31 cdleme20.v . . . 4  |-  V  =  ( ( S  .\/  T )  ./\  W )
3223, 15, 24, 6, 25, 26, 27, 28, 29, 30, 31cdleme20aN 35597 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  S  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( V  .\/  D
)  =  ( ( ( S  .\/  R
)  .\/  T )  ./\  W ) )
331, 19, 9, 4, 20, 12, 21, 22, 32syl233anc 1355 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( V  .\/  D )  =  ( ( ( S 
.\/  R )  .\/  T )  ./\  W )
)
3415, 6hlatjcom 34654 . . . . . . 7  |-  ( ( K  e.  HL  /\  S  e.  A  /\  T  e.  A )  ->  ( S  .\/  T
)  =  ( T 
.\/  S ) )
351, 4, 12, 34syl3anc 1326 . . . . . 6  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( S  .\/  T )  =  ( T  .\/  S
) )
3635oveq1d 6665 . . . . 5  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  (
( S  .\/  T
)  ./\  W )  =  ( ( T 
.\/  S )  ./\  W ) )
3731, 36syl5eq 2668 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  V  =  ( ( T 
.\/  S )  ./\  W ) )
3837oveq1d 6665 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( V  .\/  Y )  =  ( ( ( T 
.\/  S )  ./\  W )  .\/  Y ) )
39 simp23r 1183 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  -.  T  .<_  W )
40 simp32 1098 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  -.  T  .<_  ( P  .\/  Q ) )
41 eqid 2622 . . . . 5  |-  ( ( T  .\/  S ) 
./\  W )  =  ( ( T  .\/  S )  ./\  W )
4223, 15, 24, 6, 25, 26, 28, 27, 30, 29, 41cdleme20aN 35597 . . . 4  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  T  e.  A  /\  -.  T  .<_  W )  /\  ( S  e.  A  /\  -.  T  .<_  ( P 
.\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  -> 
( ( ( T 
.\/  S )  ./\  W )  .\/  Y )  =  ( ( ( T  .\/  R ) 
.\/  S )  ./\  W ) )
431, 19, 9, 12, 39, 4, 40, 22, 42syl233anc 1355 . . 3  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  (
( ( T  .\/  S )  ./\  W )  .\/  Y )  =  ( ( ( T  .\/  R )  .\/  S ) 
./\  W ) )
4438, 43eqtrd 2656 . 2  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( V  .\/  Y )  =  ( ( ( T 
.\/  R )  .\/  S )  ./\  W )
)
4518, 33, 443eqtr4d 2666 1  |-  ( ( ( K  e.  HL  /\  W  e.  H )  /\  ( R  e.  A  /\  ( S  e.  A  /\  -.  S  .<_  W )  /\  ( T  e.  A  /\  -.  T  .<_  W ) )  /\  ( -.  S  .<_  ( P  .\/  Q )  /\  -.  T  .<_  ( P  .\/  Q )  /\  R  .<_  ( P  .\/  Q ) ) )  ->  ( V  .\/  D )  =  ( V  .\/  Y
) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   class class class wbr 4653   ` cfv 5888  (class class class)co 6650   Basecbs 15857   lecple 15948   joincjn 16944   meetcmee 16945   Latclat 17045   Atomscatm 34550   HLchlt 34637   LHypclh 35270
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-iin 4523  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-1st 7168  df-2nd 7169  df-preset 16928  df-poset 16946  df-plt 16958  df-lub 16974  df-glb 16975  df-join 16976  df-meet 16977  df-p0 17039  df-p1 17040  df-lat 17046  df-clat 17108  df-oposet 34463  df-ol 34465  df-oml 34466  df-covers 34553  df-ats 34554  df-atl 34585  df-cvlat 34609  df-hlat 34638  df-psubsp 34789  df-pmap 34790  df-padd 35082  df-lhyp 35274
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator