![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl3an1b | Structured version Visualization version Unicode version |
Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
Ref | Expression |
---|---|
syl3an1b.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl3an1b.2 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl3an1b |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3an1b.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | biimpi 206 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() |
3 | syl3an1b.2 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | syl3an1 1359 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 |
This theorem is referenced by: ovmpt2elrn 7241 irrmul 11813 xrlttr 11973 flfneii 21796 padct 29497 crefdf 29915 divrngcl 33756 |
Copyright terms: Public domain | W3C validator |