| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl3an2b | Structured version Visualization version Unicode version | ||
| Description: A syllogism inference. (Contributed by NM, 22-Aug-1995.) |
| Ref | Expression |
|---|---|
| syl3an2b.1 |
|
| syl3an2b.2 |
|
| Ref | Expression |
|---|---|
| syl3an2b |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3an2b.1 |
. . 3
| |
| 2 | 1 | biimpi 206 |
. 2
|
| 3 | syl3an2b.2 |
. 2
| |
| 4 | 2, 3 | syl3an2 1360 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 |
| This theorem is referenced by: omlimcl 7658 cflim2 9085 isdrngd 18772 rintopn 20714 cmpcld 21205 funvtxval0 25897 funvtxval0OLD 25898 cusgr0v 26324 cgrcomlr 32105 dissneqlem 33187 pmapglb 35056 |
| Copyright terms: Public domain | W3C validator |