MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  flfneii Structured version   Visualization version   Unicode version

Theorem flfneii 21796
Description: A neighborhood of a limit point of a function contains the image of a filter element. (Contributed by Jeff Hankins, 11-Nov-2009.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
flfneii.x  |-  X  = 
U. J
Assertion
Ref Expression
flfneii  |-  ( ( ( J  e.  Top  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  ( ( J  fLimf  L ) `  F )  /\  N  e.  ( ( nei `  J
) `  { A } ) )  ->  E. s  e.  L  ( F " s ) 
C_  N )
Distinct variable groups:    F, s    J, s    L, s    N, s    X, s    Y, s
Allowed substitution hint:    A( s)

Proof of Theorem flfneii
Dummy variable  n is distinct from all other variables.
StepHypRef Expression
1 flfneii.x . . . . . 6  |-  X  = 
U. J
21toptopon 20722 . . . . 5  |-  ( J  e.  Top  <->  J  e.  (TopOn `  X ) )
3 flfnei 21795 . . . . 5  |-  ( ( J  e.  (TopOn `  X )  /\  L  e.  ( Fil `  Y
)  /\  F : Y
--> X )  ->  ( A  e.  ( ( J  fLimf  L ) `  F )  <->  ( A  e.  X  /\  A. n  e.  ( ( nei `  J
) `  { A } ) E. s  e.  L  ( F " s )  C_  n
) ) )
42, 3syl3an1b 1362 . . . 4  |-  ( ( J  e.  Top  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  -> 
( A  e.  ( ( J  fLimf  L ) `
 F )  <->  ( A  e.  X  /\  A. n  e.  ( ( nei `  J
) `  { A } ) E. s  e.  L  ( F " s )  C_  n
) ) )
54simplbda 654 . . 3  |-  ( ( ( J  e.  Top  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  ( ( J  fLimf  L ) `  F ) )  ->  A. n  e.  (
( nei `  J
) `  { A } ) E. s  e.  L  ( F " s )  C_  n
)
653adant3 1081 . 2  |-  ( ( ( J  e.  Top  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  ( ( J  fLimf  L ) `  F )  /\  N  e.  ( ( nei `  J
) `  { A } ) )  ->  A. n  e.  (
( nei `  J
) `  { A } ) E. s  e.  L  ( F " s )  C_  n
)
7 sseq2 3627 . . . . 5  |-  ( n  =  N  ->  (
( F " s
)  C_  n  <->  ( F " s )  C_  N
) )
87rexbidv 3052 . . . 4  |-  ( n  =  N  ->  ( E. s  e.  L  ( F " s ) 
C_  n  <->  E. s  e.  L  ( F " s )  C_  N
) )
98rspcv 3305 . . 3  |-  ( N  e.  ( ( nei `  J ) `  { A } )  ->  ( A. n  e.  (
( nei `  J
) `  { A } ) E. s  e.  L  ( F " s )  C_  n  ->  E. s  e.  L  ( F " s ) 
C_  N ) )
1093ad2ant3 1084 . 2  |-  ( ( ( J  e.  Top  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  ( ( J  fLimf  L ) `  F )  /\  N  e.  ( ( nei `  J
) `  { A } ) )  -> 
( A. n  e.  ( ( nei `  J
) `  { A } ) E. s  e.  L  ( F " s )  C_  n  ->  E. s  e.  L  ( F " s ) 
C_  N ) )
116, 10mpd 15 1  |-  ( ( ( J  e.  Top  /\  L  e.  ( Fil `  Y )  /\  F : Y --> X )  /\  A  e.  ( ( J  fLimf  L ) `  F )  /\  N  e.  ( ( nei `  J
) `  { A } ) )  ->  E. s  e.  L  ( F " s ) 
C_  N )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    C_ wss 3574   {csn 4177   U.cuni 4436   "cima 5117   -->wf 5884   ` cfv 5888  (class class class)co 6650   Topctop 20698  TopOnctopon 20715   neicnei 20901   Filcfil 21649    fLimf cflf 21739
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-map 7859  df-fbas 19743  df-fg 19744  df-top 20699  df-topon 20716  df-nei 20902  df-fil 21650  df-fm 21742  df-flim 21743  df-flf 21744
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator