| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl3anbr | Structured version Visualization version Unicode version | ||
| Description: A triple syllogism inference. (Contributed by NM, 29-Dec-2011.) |
| Ref | Expression |
|---|---|
| syl3anbr.1 |
|
| syl3anbr.2 |
|
| syl3anbr.3 |
|
| syl3anbr.4 |
|
| Ref | Expression |
|---|---|
| syl3anbr |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anbr.1 |
. . 3
| |
| 2 | 1 | bicomi 214 |
. 2
|
| 3 | syl3anbr.2 |
. . 3
| |
| 4 | 3 | bicomi 214 |
. 2
|
| 5 | syl3anbr.3 |
. . 3
| |
| 6 | 5 | bicomi 214 |
. 2
|
| 7 | syl3anbr.4 |
. 2
| |
| 8 | 2, 4, 6, 7 | syl3anb 1369 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 |
| This theorem is referenced by: abvtriv 18841 colinearxfr 32182 paddval 35084 |
| Copyright terms: Public domain | W3C validator |