![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl3anb | Structured version Visualization version Unicode version |
Description: A triple syllogism inference. (Contributed by NM, 15-Oct-2005.) |
Ref | Expression |
---|---|
syl3anb.1 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl3anb.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl3anb.3 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl3anb.4 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl3anb |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anb.1 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
2 | syl3anb.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | syl3anb.3 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 1, 2, 3 | 3anbi123i 1251 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | syl3anb.4 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | 4, 5 | sylbi 207 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() ![]() ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 197 df-an 386 df-3an 1039 |
This theorem is referenced by: syl3anbr 1370 poxp 7289 infempty 8412 symgsssg 17887 symgfisg 17888 lmodvscl 18880 xrs1mnd 19784 iscnp2 21043 slmdvscl 29767 cgr3permute3 32154 cgr3permute1 32155 cgr3permute2 32156 cgr3permute4 32157 cgr3permute5 32158 colinearxfr 32182 grposnOLD 33681 rngunsnply 37743 |
Copyright terms: Public domain | W3C validator |