![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl6ci | Structured version Visualization version Unicode version |
Description: A syllogism inference combined with contraction. (Contributed by Alan Sare, 18-Mar-2012.) |
Ref | Expression |
---|---|
syl6ci.1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
syl6ci.2 |
![]() ![]() ![]() ![]() ![]() ![]() |
syl6ci.3 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Ref | Expression |
---|---|
syl6ci |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl6ci.1 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | syl6ci.2 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() | |
3 | 2 | a1d 25 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | syl6ci.3 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 1, 3, 4 | syl6c 70 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff setvar class |
Syntax hints: ![]() |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 |
This theorem is referenced by: ordelord 5745 f1dmex 7136 omeulem2 7663 2pwuninel 8115 isumrpcl 14575 kqfvima 21533 caubl 23106 nbupgr 26240 nbumgrvtx 26242 umgr2adedgspth 26844 soseq 31751 btwnconn1lem12 32205 sbcim2g 38748 ee21an 38959 |
Copyright terms: Public domain | W3C validator |