MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caubl Structured version   Visualization version   Unicode version

Theorem caubl 23106
Description: Sufficient condition to ensure a sequence of nested balls is Cauchy. (Contributed by Mario Carneiro, 18-Jan-2014.) (Revised by Mario Carneiro, 1-May-2014.)
Hypotheses
Ref Expression
caubl.2  |-  ( ph  ->  D  e.  ( *Met `  X ) )
caubl.3  |-  ( ph  ->  F : NN --> ( X  X.  RR+ ) )
caubl.4  |-  ( ph  ->  A. n  e.  NN  ( ( ball `  D
) `  ( F `  ( n  +  1 ) ) )  C_  ( ( ball `  D
) `  ( F `  n ) ) )
caubl.5  |-  ( ph  ->  A. r  e.  RR+  E. n  e.  NN  ( 2nd `  ( F `  n ) )  < 
r )
Assertion
Ref Expression
caubl  |-  ( ph  ->  ( 1st  o.  F
)  e.  ( Cau `  D ) )
Distinct variable groups:    n, r, D    n, F, r    ph, r    n, X, r    ph, n

Proof of Theorem caubl
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 caubl.5 . . 3  |-  ( ph  ->  A. r  e.  RR+  E. n  e.  NN  ( 2nd `  ( F `  n ) )  < 
r )
2 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( r  =  n  ->  ( F `  r )  =  ( F `  n ) )
32fveq2d 6195 . . . . . . . . . . . . 13  |-  ( r  =  n  ->  (
( ball `  D ) `  ( F `  r
) )  =  ( ( ball `  D
) `  ( F `  n ) ) )
43sseq1d 3632 . . . . . . . . . . . 12  |-  ( r  =  n  ->  (
( ( ball `  D
) `  ( F `  r ) )  C_  ( ( ball `  D
) `  ( F `  n ) )  <->  ( ( ball `  D ) `  ( F `  n ) )  C_  ( ( ball `  D ) `  ( F `  n ) ) ) )
54imbi2d 330 . . . . . . . . . . 11  |-  ( r  =  n  ->  (
( ( ph  /\  n  e.  NN )  ->  ( ( ball `  D
) `  ( F `  r ) )  C_  ( ( ball `  D
) `  ( F `  n ) ) )  <-> 
( ( ph  /\  n  e.  NN )  ->  ( ( ball `  D
) `  ( F `  n ) )  C_  ( ( ball `  D
) `  ( F `  n ) ) ) ) )
6 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( r  =  k  ->  ( F `  r )  =  ( F `  k ) )
76fveq2d 6195 . . . . . . . . . . . . 13  |-  ( r  =  k  ->  (
( ball `  D ) `  ( F `  r
) )  =  ( ( ball `  D
) `  ( F `  k ) ) )
87sseq1d 3632 . . . . . . . . . . . 12  |-  ( r  =  k  ->  (
( ( ball `  D
) `  ( F `  r ) )  C_  ( ( ball `  D
) `  ( F `  n ) )  <->  ( ( ball `  D ) `  ( F `  k ) )  C_  ( ( ball `  D ) `  ( F `  n ) ) ) )
98imbi2d 330 . . . . . . . . . . 11  |-  ( r  =  k  ->  (
( ( ph  /\  n  e.  NN )  ->  ( ( ball `  D
) `  ( F `  r ) )  C_  ( ( ball `  D
) `  ( F `  n ) ) )  <-> 
( ( ph  /\  n  e.  NN )  ->  ( ( ball `  D
) `  ( F `  k ) )  C_  ( ( ball `  D
) `  ( F `  n ) ) ) ) )
10 fveq2 6191 . . . . . . . . . . . . . 14  |-  ( r  =  ( k  +  1 )  ->  ( F `  r )  =  ( F `  ( k  +  1 ) ) )
1110fveq2d 6195 . . . . . . . . . . . . 13  |-  ( r  =  ( k  +  1 )  ->  (
( ball `  D ) `  ( F `  r
) )  =  ( ( ball `  D
) `  ( F `  ( k  +  1 ) ) ) )
1211sseq1d 3632 . . . . . . . . . . . 12  |-  ( r  =  ( k  +  1 )  ->  (
( ( ball `  D
) `  ( F `  r ) )  C_  ( ( ball `  D
) `  ( F `  n ) )  <->  ( ( ball `  D ) `  ( F `  ( k  +  1 ) ) )  C_  ( ( ball `  D ) `  ( F `  n ) ) ) )
1312imbi2d 330 . . . . . . . . . . 11  |-  ( r  =  ( k  +  1 )  ->  (
( ( ph  /\  n  e.  NN )  ->  ( ( ball `  D
) `  ( F `  r ) )  C_  ( ( ball `  D
) `  ( F `  n ) ) )  <-> 
( ( ph  /\  n  e.  NN )  ->  ( ( ball `  D
) `  ( F `  ( k  +  1 ) ) )  C_  ( ( ball `  D
) `  ( F `  n ) ) ) ) )
14 ssid 3624 . . . . . . . . . . . 12  |-  ( (
ball `  D ) `  ( F `  n
) )  C_  (
( ball `  D ) `  ( F `  n
) )
15142a1i 12 . . . . . . . . . . 11  |-  ( n  e.  ZZ  ->  (
( ph  /\  n  e.  NN )  ->  (
( ball `  D ) `  ( F `  n
) )  C_  (
( ball `  D ) `  ( F `  n
) ) ) )
16 caubl.4 . . . . . . . . . . . . . . . 16  |-  ( ph  ->  A. n  e.  NN  ( ( ball `  D
) `  ( F `  ( n  +  1 ) ) )  C_  ( ( ball `  D
) `  ( F `  n ) ) )
17 eluznn 11758 . . . . . . . . . . . . . . . 16  |-  ( ( n  e.  NN  /\  k  e.  ( ZZ>= `  n ) )  -> 
k  e.  NN )
18 oveq1 6657 . . . . . . . . . . . . . . . . . . . 20  |-  ( n  =  k  ->  (
n  +  1 )  =  ( k  +  1 ) )
1918fveq2d 6195 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  k  ->  ( F `  ( n  +  1 ) )  =  ( F `  ( k  +  1 ) ) )
2019fveq2d 6195 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  k  ->  (
( ball `  D ) `  ( F `  (
n  +  1 ) ) )  =  ( ( ball `  D
) `  ( F `  ( k  +  1 ) ) ) )
21 fveq2 6191 . . . . . . . . . . . . . . . . . . 19  |-  ( n  =  k  ->  ( F `  n )  =  ( F `  k ) )
2221fveq2d 6195 . . . . . . . . . . . . . . . . . 18  |-  ( n  =  k  ->  (
( ball `  D ) `  ( F `  n
) )  =  ( ( ball `  D
) `  ( F `  k ) ) )
2320, 22sseq12d 3634 . . . . . . . . . . . . . . . . 17  |-  ( n  =  k  ->  (
( ( ball `  D
) `  ( F `  ( n  +  1 ) ) )  C_  ( ( ball `  D
) `  ( F `  n ) )  <->  ( ( ball `  D ) `  ( F `  ( k  +  1 ) ) )  C_  ( ( ball `  D ) `  ( F `  k ) ) ) )
2423rspccva 3308 . . . . . . . . . . . . . . . 16  |-  ( ( A. n  e.  NN  ( ( ball `  D
) `  ( F `  ( n  +  1 ) ) )  C_  ( ( ball `  D
) `  ( F `  n ) )  /\  k  e.  NN )  ->  ( ( ball `  D
) `  ( F `  ( k  +  1 ) ) )  C_  ( ( ball `  D
) `  ( F `  k ) ) )
2516, 17, 24syl2an 494 . . . . . . . . . . . . . . 15  |-  ( (
ph  /\  ( n  e.  NN  /\  k  e.  ( ZZ>= `  n )
) )  ->  (
( ball `  D ) `  ( F `  (
k  +  1 ) ) )  C_  (
( ball `  D ) `  ( F `  k
) ) )
2625anassrs 680 . . . . . . . . . . . . . 14  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( ball `  D ) `  ( F `  ( k  +  1 ) ) )  C_  ( ( ball `  D ) `  ( F `  k ) ) )
27 sstr2 3610 . . . . . . . . . . . . . 14  |-  ( ( ( ball `  D
) `  ( F `  ( k  +  1 ) ) )  C_  ( ( ball `  D
) `  ( F `  k ) )  -> 
( ( ( ball `  D ) `  ( F `  k )
)  C_  ( ( ball `  D ) `  ( F `  n ) )  ->  ( ( ball `  D ) `  ( F `  ( k  +  1 ) ) )  C_  ( ( ball `  D ) `  ( F `  n ) ) ) )
2826, 27syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ph  /\  n  e.  NN )  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ball `  D ) `  ( F `  k
) )  C_  (
( ball `  D ) `  ( F `  n
) )  ->  (
( ball `  D ) `  ( F `  (
k  +  1 ) ) )  C_  (
( ball `  D ) `  ( F `  n
) ) ) )
2928expcom 451 . . . . . . . . . . . 12  |-  ( k  e.  ( ZZ>= `  n
)  ->  ( ( ph  /\  n  e.  NN )  ->  ( ( (
ball `  D ) `  ( F `  k
) )  C_  (
( ball `  D ) `  ( F `  n
) )  ->  (
( ball `  D ) `  ( F `  (
k  +  1 ) ) )  C_  (
( ball `  D ) `  ( F `  n
) ) ) ) )
3029a2d 29 . . . . . . . . . . 11  |-  ( k  e.  ( ZZ>= `  n
)  ->  ( (
( ph  /\  n  e.  NN )  ->  (
( ball `  D ) `  ( F `  k
) )  C_  (
( ball `  D ) `  ( F `  n
) ) )  -> 
( ( ph  /\  n  e.  NN )  ->  ( ( ball `  D
) `  ( F `  ( k  +  1 ) ) )  C_  ( ( ball `  D
) `  ( F `  n ) ) ) ) )
315, 9, 13, 9, 15, 30uzind4 11746 . . . . . . . . . 10  |-  ( k  e.  ( ZZ>= `  n
)  ->  ( ( ph  /\  n  e.  NN )  ->  ( ( ball `  D ) `  ( F `  k )
)  C_  ( ( ball `  D ) `  ( F `  n ) ) ) )
3231com12 32 . . . . . . . . 9  |-  ( (
ph  /\  n  e.  NN )  ->  ( k  e.  ( ZZ>= `  n
)  ->  ( ( ball `  D ) `  ( F `  k ) )  C_  ( ( ball `  D ) `  ( F `  n ) ) ) )
3332ad2ant2r 783 . . . . . . . 8  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  NN  /\  ( 2nd `  ( F `
 n ) )  <  r ) )  ->  ( k  e.  ( ZZ>= `  n )  ->  ( ( ball `  D
) `  ( F `  k ) )  C_  ( ( ball `  D
) `  ( F `  n ) ) ) )
34 relxp 5227 . . . . . . . . . . . . . . . 16  |-  Rel  ( X  X.  RR+ )
35 caubl.3 . . . . . . . . . . . . . . . . . 18  |-  ( ph  ->  F : NN --> ( X  X.  RR+ ) )
3635ad3antrrr 766 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  NN  /\  ( 2nd `  ( F `  n )
)  <  r )
)  /\  k  e.  ( ZZ>= `  n )
)  ->  F : NN
--> ( X  X.  RR+ ) )
37 simplrl 800 . . . . . . . . . . . . . . . . 17  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  NN  /\  ( 2nd `  ( F `  n )
)  <  r )
)  /\  k  e.  ( ZZ>= `  n )
)  ->  n  e.  NN )
3836, 37ffvelrnd 6360 . . . . . . . . . . . . . . . 16  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  NN  /\  ( 2nd `  ( F `  n )
)  <  r )
)  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  n )  e.  ( X  X.  RR+ )
)
39 1st2nd 7214 . . . . . . . . . . . . . . . 16  |-  ( ( Rel  ( X  X.  RR+ )  /\  ( F `
 n )  e.  ( X  X.  RR+ ) )  ->  ( F `  n )  =  <. ( 1st `  ( F `  n )
) ,  ( 2nd `  ( F `  n
) ) >. )
4034, 38, 39sylancr 695 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  NN  /\  ( 2nd `  ( F `  n )
)  <  r )
)  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  n )  =  <. ( 1st `  ( F `
 n ) ) ,  ( 2nd `  ( F `  n )
) >. )
4140fveq2d 6195 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  NN  /\  ( 2nd `  ( F `  n )
)  <  r )
)  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( ball `  D ) `  ( F `  n ) )  =  ( (
ball `  D ) `  <. ( 1st `  ( F `  n )
) ,  ( 2nd `  ( F `  n
) ) >. )
)
42 df-ov 6653 . . . . . . . . . . . . . 14  |-  ( ( 1st `  ( F `
 n ) ) ( ball `  D
) ( 2nd `  ( F `  n )
) )  =  ( ( ball `  D
) `  <. ( 1st `  ( F `  n
) ) ,  ( 2nd `  ( F `
 n ) )
>. )
4341, 42syl6eqr 2674 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  NN  /\  ( 2nd `  ( F `  n )
)  <  r )
)  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( ball `  D ) `  ( F `  n ) )  =  ( ( 1st `  ( F `
 n ) ) ( ball `  D
) ( 2nd `  ( F `  n )
) ) )
44 caubl.2 . . . . . . . . . . . . . . 15  |-  ( ph  ->  D  e.  ( *Met `  X ) )
4544ad3antrrr 766 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  NN  /\  ( 2nd `  ( F `  n )
)  <  r )
)  /\  k  e.  ( ZZ>= `  n )
)  ->  D  e.  ( *Met `  X
) )
46 xp1st 7198 . . . . . . . . . . . . . . 15  |-  ( ( F `  n )  e.  ( X  X.  RR+ )  ->  ( 1st `  ( F `  n
) )  e.  X
)
4738, 46syl 17 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  NN  /\  ( 2nd `  ( F `  n )
)  <  r )
)  /\  k  e.  ( ZZ>= `  n )
)  ->  ( 1st `  ( F `  n
) )  e.  X
)
48 xp2nd 7199 . . . . . . . . . . . . . . . 16  |-  ( ( F `  n )  e.  ( X  X.  RR+ )  ->  ( 2nd `  ( F `  n
) )  e.  RR+ )
4938, 48syl 17 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  NN  /\  ( 2nd `  ( F `  n )
)  <  r )
)  /\  k  e.  ( ZZ>= `  n )
)  ->  ( 2nd `  ( F `  n
) )  e.  RR+ )
5049rpxrd 11873 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  NN  /\  ( 2nd `  ( F `  n )
)  <  r )
)  /\  k  e.  ( ZZ>= `  n )
)  ->  ( 2nd `  ( F `  n
) )  e.  RR* )
51 simpllr 799 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  NN  /\  ( 2nd `  ( F `  n )
)  <  r )
)  /\  k  e.  ( ZZ>= `  n )
)  ->  r  e.  RR+ )
5251rpxrd 11873 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  NN  /\  ( 2nd `  ( F `  n )
)  <  r )
)  /\  k  e.  ( ZZ>= `  n )
)  ->  r  e.  RR* )
53 simplrr 801 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  NN  /\  ( 2nd `  ( F `  n )
)  <  r )
)  /\  k  e.  ( ZZ>= `  n )
)  ->  ( 2nd `  ( F `  n
) )  <  r
)
54 rpre 11839 . . . . . . . . . . . . . . . . 17  |-  ( ( 2nd `  ( F `
 n ) )  e.  RR+  ->  ( 2nd `  ( F `  n
) )  e.  RR )
55 rpre 11839 . . . . . . . . . . . . . . . . 17  |-  ( r  e.  RR+  ->  r  e.  RR )
56 ltle 10126 . . . . . . . . . . . . . . . . 17  |-  ( ( ( 2nd `  ( F `  n )
)  e.  RR  /\  r  e.  RR )  ->  ( ( 2nd `  ( F `  n )
)  <  r  ->  ( 2nd `  ( F `
 n ) )  <_  r ) )
5754, 55, 56syl2an 494 . . . . . . . . . . . . . . . 16  |-  ( ( ( 2nd `  ( F `  n )
)  e.  RR+  /\  r  e.  RR+ )  ->  (
( 2nd `  ( F `  n )
)  <  r  ->  ( 2nd `  ( F `
 n ) )  <_  r ) )
5849, 51, 57syl2anc 693 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  NN  /\  ( 2nd `  ( F `  n )
)  <  r )
)  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( 2nd `  ( F `  n ) )  < 
r  ->  ( 2nd `  ( F `  n
) )  <_  r
) )
5953, 58mpd 15 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  NN  /\  ( 2nd `  ( F `  n )
)  <  r )
)  /\  k  e.  ( ZZ>= `  n )
)  ->  ( 2nd `  ( F `  n
) )  <_  r
)
60 ssbl 22228 . . . . . . . . . . . . . 14  |-  ( ( ( D  e.  ( *Met `  X
)  /\  ( 1st `  ( F `  n
) )  e.  X
)  /\  ( ( 2nd `  ( F `  n ) )  e. 
RR*  /\  r  e.  RR* )  /\  ( 2nd `  ( F `  n
) )  <_  r
)  ->  ( ( 1st `  ( F `  n ) ) (
ball `  D )
( 2nd `  ( F `  n )
) )  C_  (
( 1st `  ( F `  n )
) ( ball `  D
) r ) )
6145, 47, 50, 52, 59, 60syl221anc 1337 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  NN  /\  ( 2nd `  ( F `  n )
)  <  r )
)  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( 1st `  ( F `  n ) ) (
ball `  D )
( 2nd `  ( F `  n )
) )  C_  (
( 1st `  ( F `  n )
) ( ball `  D
) r ) )
6243, 61eqsstrd 3639 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  NN  /\  ( 2nd `  ( F `  n )
)  <  r )
)  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( ball `  D ) `  ( F `  n ) )  C_  ( ( 1st `  ( F `  n ) ) (
ball `  D )
r ) )
63 sstr2 3610 . . . . . . . . . . . 12  |-  ( ( ( ball `  D
) `  ( F `  k ) )  C_  ( ( ball `  D
) `  ( F `  n ) )  -> 
( ( ( ball `  D ) `  ( F `  n )
)  C_  ( ( 1st `  ( F `  n ) ) (
ball `  D )
r )  ->  (
( ball `  D ) `  ( F `  k
) )  C_  (
( 1st `  ( F `  n )
) ( ball `  D
) r ) ) )
6462, 63syl5com 31 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  NN  /\  ( 2nd `  ( F `  n )
)  <  r )
)  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ball `  D ) `  ( F `  k
) )  C_  (
( ball `  D ) `  ( F `  n
) )  ->  (
( ball `  D ) `  ( F `  k
) )  C_  (
( 1st `  ( F `  n )
) ( ball `  D
) r ) ) )
65 simprl 794 . . . . . . . . . . . . . . . 16  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  NN  /\  ( 2nd `  ( F `
 n ) )  <  r ) )  ->  n  e.  NN )
6665, 17sylan 488 . . . . . . . . . . . . . . 15  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  NN  /\  ( 2nd `  ( F `  n )
)  <  r )
)  /\  k  e.  ( ZZ>= `  n )
)  ->  k  e.  NN )
6736, 66ffvelrnd 6360 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  NN  /\  ( 2nd `  ( F `  n )
)  <  r )
)  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  k )  e.  ( X  X.  RR+ )
)
68 xp1st 7198 . . . . . . . . . . . . . 14  |-  ( ( F `  k )  e.  ( X  X.  RR+ )  ->  ( 1st `  ( F `  k
) )  e.  X
)
6967, 68syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  NN  /\  ( 2nd `  ( F `  n )
)  <  r )
)  /\  k  e.  ( ZZ>= `  n )
)  ->  ( 1st `  ( F `  k
) )  e.  X
)
70 xp2nd 7199 . . . . . . . . . . . . . 14  |-  ( ( F `  k )  e.  ( X  X.  RR+ )  ->  ( 2nd `  ( F `  k
) )  e.  RR+ )
7167, 70syl 17 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  NN  /\  ( 2nd `  ( F `  n )
)  <  r )
)  /\  k  e.  ( ZZ>= `  n )
)  ->  ( 2nd `  ( F `  k
) )  e.  RR+ )
72 blcntr 22218 . . . . . . . . . . . . 13  |-  ( ( D  e.  ( *Met `  X )  /\  ( 1st `  ( F `  k )
)  e.  X  /\  ( 2nd `  ( F `
 k ) )  e.  RR+ )  ->  ( 1st `  ( F `  k ) )  e.  ( ( 1st `  ( F `  k )
) ( ball `  D
) ( 2nd `  ( F `  k )
) ) )
7345, 69, 71, 72syl3anc 1326 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  NN  /\  ( 2nd `  ( F `  n )
)  <  r )
)  /\  k  e.  ( ZZ>= `  n )
)  ->  ( 1st `  ( F `  k
) )  e.  ( ( 1st `  ( F `  k )
) ( ball `  D
) ( 2nd `  ( F `  k )
) ) )
74 1st2nd 7214 . . . . . . . . . . . . . . 15  |-  ( ( Rel  ( X  X.  RR+ )  /\  ( F `
 k )  e.  ( X  X.  RR+ ) )  ->  ( F `  k )  =  <. ( 1st `  ( F `  k )
) ,  ( 2nd `  ( F `  k
) ) >. )
7534, 67, 74sylancr 695 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  NN  /\  ( 2nd `  ( F `  n )
)  <  r )
)  /\  k  e.  ( ZZ>= `  n )
)  ->  ( F `  k )  =  <. ( 1st `  ( F `
 k ) ) ,  ( 2nd `  ( F `  k )
) >. )
7675fveq2d 6195 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  NN  /\  ( 2nd `  ( F `  n )
)  <  r )
)  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( ball `  D ) `  ( F `  k ) )  =  ( (
ball `  D ) `  <. ( 1st `  ( F `  k )
) ,  ( 2nd `  ( F `  k
) ) >. )
)
77 df-ov 6653 . . . . . . . . . . . . 13  |-  ( ( 1st `  ( F `
 k ) ) ( ball `  D
) ( 2nd `  ( F `  k )
) )  =  ( ( ball `  D
) `  <. ( 1st `  ( F `  k
) ) ,  ( 2nd `  ( F `
 k ) )
>. )
7876, 77syl6eqr 2674 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  NN  /\  ( 2nd `  ( F `  n )
)  <  r )
)  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( ball `  D ) `  ( F `  k ) )  =  ( ( 1st `  ( F `
 k ) ) ( ball `  D
) ( 2nd `  ( F `  k )
) ) )
7973, 78eleqtrrd 2704 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  NN  /\  ( 2nd `  ( F `  n )
)  <  r )
)  /\  k  e.  ( ZZ>= `  n )
)  ->  ( 1st `  ( F `  k
) )  e.  ( ( ball `  D
) `  ( F `  k ) ) )
80 ssel 3597 . . . . . . . . . . 11  |-  ( ( ( ball `  D
) `  ( F `  k ) )  C_  ( ( 1st `  ( F `  n )
) ( ball `  D
) r )  -> 
( ( 1st `  ( F `  k )
)  e.  ( (
ball `  D ) `  ( F `  k
) )  ->  ( 1st `  ( F `  k ) )  e.  ( ( 1st `  ( F `  n )
) ( ball `  D
) r ) ) )
8164, 79, 80syl6ci 71 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  NN  /\  ( 2nd `  ( F `  n )
)  <  r )
)  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ball `  D ) `  ( F `  k
) )  C_  (
( ball `  D ) `  ( F `  n
) )  ->  ( 1st `  ( F `  k ) )  e.  ( ( 1st `  ( F `  n )
) ( ball `  D
) r ) ) )
82 elbl2 22195 . . . . . . . . . . 11  |-  ( ( ( D  e.  ( *Met `  X
)  /\  r  e.  RR* )  /\  ( ( 1st `  ( F `
 n ) )  e.  X  /\  ( 1st `  ( F `  k ) )  e.  X ) )  -> 
( ( 1st `  ( F `  k )
)  e.  ( ( 1st `  ( F `
 n ) ) ( ball `  D
) r )  <->  ( ( 1st `  ( F `  n ) ) D ( 1st `  ( F `  k )
) )  <  r
) )
8345, 52, 47, 69, 82syl22anc 1327 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  NN  /\  ( 2nd `  ( F `  n )
)  <  r )
)  /\  k  e.  ( ZZ>= `  n )
)  ->  ( ( 1st `  ( F `  k ) )  e.  ( ( 1st `  ( F `  n )
) ( ball `  D
) r )  <->  ( ( 1st `  ( F `  n ) ) D ( 1st `  ( F `  k )
) )  <  r
) )
8481, 83sylibd 229 . . . . . . . . 9  |-  ( ( ( ( ph  /\  r  e.  RR+ )  /\  ( n  e.  NN  /\  ( 2nd `  ( F `  n )
)  <  r )
)  /\  k  e.  ( ZZ>= `  n )
)  ->  ( (
( ball `  D ) `  ( F `  k
) )  C_  (
( ball `  D ) `  ( F `  n
) )  ->  (
( 1st `  ( F `  n )
) D ( 1st `  ( F `  k
) ) )  < 
r ) )
8584ex 450 . . . . . . . 8  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  NN  /\  ( 2nd `  ( F `
 n ) )  <  r ) )  ->  ( k  e.  ( ZZ>= `  n )  ->  ( ( ( ball `  D ) `  ( F `  k )
)  C_  ( ( ball `  D ) `  ( F `  n ) )  ->  ( ( 1st `  ( F `  n ) ) D ( 1st `  ( F `  k )
) )  <  r
) ) )
8633, 85mpdd 43 . . . . . . 7  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  NN  /\  ( 2nd `  ( F `
 n ) )  <  r ) )  ->  ( k  e.  ( ZZ>= `  n )  ->  ( ( 1st `  ( F `  n )
) D ( 1st `  ( F `  k
) ) )  < 
r ) )
8786ralrimiv 2965 . . . . . 6  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  (
n  e.  NN  /\  ( 2nd `  ( F `
 n ) )  <  r ) )  ->  A. k  e.  (
ZZ>= `  n ) ( ( 1st `  ( F `  n )
) D ( 1st `  ( F `  k
) ) )  < 
r )
8887expr 643 . . . . 5  |-  ( ( ( ph  /\  r  e.  RR+ )  /\  n  e.  NN )  ->  (
( 2nd `  ( F `  n )
)  <  r  ->  A. k  e.  ( ZZ>= `  n ) ( ( 1st `  ( F `
 n ) ) D ( 1st `  ( F `  k )
) )  <  r
) )
8988reximdva 3017 . . . 4  |-  ( (
ph  /\  r  e.  RR+ )  ->  ( E. n  e.  NN  ( 2nd `  ( F `  n ) )  < 
r  ->  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( 1st `  ( F `  n )
) D ( 1st `  ( F `  k
) ) )  < 
r ) )
9089ralimdva 2962 . . 3  |-  ( ph  ->  ( A. r  e.  RR+  E. n  e.  NN  ( 2nd `  ( F `
 n ) )  <  r  ->  A. r  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( 1st `  ( F `  n )
) D ( 1st `  ( F `  k
) ) )  < 
r ) )
911, 90mpd 15 . 2  |-  ( ph  ->  A. r  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n ) ( ( 1st `  ( F `
 n ) ) D ( 1st `  ( F `  k )
) )  <  r
)
92 nnuz 11723 . . 3  |-  NN  =  ( ZZ>= `  1 )
93 1zzd 11408 . . 3  |-  ( ph  ->  1  e.  ZZ )
94 fvco3 6275 . . . 4  |-  ( ( F : NN --> ( X  X.  RR+ )  /\  k  e.  NN )  ->  (
( 1st  o.  F
) `  k )  =  ( 1st `  ( F `  k )
) )
9535, 94sylan 488 . . 3  |-  ( (
ph  /\  k  e.  NN )  ->  ( ( 1st  o.  F ) `
 k )  =  ( 1st `  ( F `  k )
) )
96 fvco3 6275 . . . 4  |-  ( ( F : NN --> ( X  X.  RR+ )  /\  n  e.  NN )  ->  (
( 1st  o.  F
) `  n )  =  ( 1st `  ( F `  n )
) )
9735, 96sylan 488 . . 3  |-  ( (
ph  /\  n  e.  NN )  ->  ( ( 1st  o.  F ) `
 n )  =  ( 1st `  ( F `  n )
) )
98 1stcof 7196 . . . 4  |-  ( F : NN --> ( X  X.  RR+ )  ->  ( 1st  o.  F ) : NN --> X )
9935, 98syl 17 . . 3  |-  ( ph  ->  ( 1st  o.  F
) : NN --> X )
10092, 44, 93, 95, 97, 99iscauf 23078 . 2  |-  ( ph  ->  ( ( 1st  o.  F )  e.  ( Cau `  D )  <->  A. r  e.  RR+  E. n  e.  NN  A. k  e.  ( ZZ>= `  n )
( ( 1st `  ( F `  n )
) D ( 1st `  ( F `  k
) ) )  < 
r ) )
10191, 100mpbird 247 1  |-  ( ph  ->  ( 1st  o.  F
)  e.  ( Cau `  D ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913    C_ wss 3574   <.cop 4183   class class class wbr 4653    X. cxp 5112    o. ccom 5118   Rel wrel 5119   -->wf 5884   ` cfv 5888  (class class class)co 6650   1stc1st 7166   2ndc2nd 7167   RRcr 9935   1c1 9937    + caddc 9939   RR*cxr 10073    < clt 10074    <_ cle 10075   NNcn 11020   ZZcz 11377   ZZ>=cuz 11687   RR+crp 11832   *Metcxmt 19731   ballcbl 19733   Caucca 23051
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-div 10685  df-nn 11021  df-2 11079  df-n0 11293  df-z 11378  df-uz 11688  df-rp 11833  df-xneg 11946  df-xadd 11947  df-xmul 11948  df-psmet 19738  df-xmet 19739  df-bl 19741  df-cau 23054
This theorem is referenced by:  bcthlem4  23124  heiborlem9  33618
  Copyright terms: Public domain W3C validator