MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  kqfvima Structured version   Visualization version   Unicode version

Theorem kqfvima 21533
Description: When the image set is open, the quotient map satisfies a partial converse to fnfvima 6496, which is normally only true for injective functions. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
kqval.2  |-  F  =  ( x  e.  X  |->  { y  e.  J  |  x  e.  y } )
Assertion
Ref Expression
kqfvima  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J  /\  A  e.  X )  ->  ( A  e.  U  <->  ( F `  A )  e.  ( F " U ) ) )
Distinct variable groups:    x, y, A    x, J, y    x, X, y
Allowed substitution hints:    U( x, y)    F( x, y)

Proof of Theorem kqfvima
Dummy variables  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 kqval.2 . . . . 5  |-  F  =  ( x  e.  X  |->  { y  e.  J  |  x  e.  y } )
21kqffn 21528 . . . 4  |-  ( J  e.  (TopOn `  X
)  ->  F  Fn  X )
323ad2ant1 1082 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J  /\  A  e.  X )  ->  F  Fn  X )
4 toponss 20731 . . . 4  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J )  ->  U  C_  X )
543adant3 1081 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J  /\  A  e.  X )  ->  U  C_  X )
6 fnfvima 6496 . . . 4  |-  ( ( F  Fn  X  /\  U  C_  X  /\  A  e.  U )  ->  ( F `  A )  e.  ( F " U
) )
763expia 1267 . . 3  |-  ( ( F  Fn  X  /\  U  C_  X )  -> 
( A  e.  U  ->  ( F `  A
)  e.  ( F
" U ) ) )
83, 5, 7syl2anc 693 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J  /\  A  e.  X )  ->  ( A  e.  U  ->  ( F `  A )  e.  ( F " U ) ) )
9 fnfun 5988 . . . 4  |-  ( F  Fn  X  ->  Fun  F )
10 fvelima 6248 . . . . 5  |-  ( ( Fun  F  /\  ( F `  A )  e.  ( F " U
) )  ->  E. z  e.  U  ( F `  z )  =  ( F `  A ) )
1110ex 450 . . . 4  |-  ( Fun 
F  ->  ( ( F `  A )  e.  ( F " U
)  ->  E. z  e.  U  ( F `  z )  =  ( F `  A ) ) )
123, 9, 113syl 18 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J  /\  A  e.  X )  ->  (
( F `  A
)  e.  ( F
" U )  ->  E. z  e.  U  ( F `  z )  =  ( F `  A ) ) )
13 simpl1 1064 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  J  /\  A  e.  X )  /\  z  e.  U )  ->  J  e.  (TopOn `  X )
)
145sselda 3603 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  J  /\  A  e.  X )  /\  z  e.  U )  ->  z  e.  X )
15 simpl3 1066 . . . . . . . 8  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  J  /\  A  e.  X )  /\  z  e.  U )  ->  A  e.  X )
161kqfeq 21527 . . . . . . . 8  |-  ( ( J  e.  (TopOn `  X )  /\  z  e.  X  /\  A  e.  X )  ->  (
( F `  z
)  =  ( F `
 A )  <->  A. y  e.  J  ( z  e.  y  <->  A  e.  y
) ) )
1713, 14, 15, 16syl3anc 1326 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  J  /\  A  e.  X )  /\  z  e.  U )  ->  (
( F `  z
)  =  ( F `
 A )  <->  A. y  e.  J  ( z  e.  y  <->  A  e.  y
) ) )
18 eleq2 2690 . . . . . . . . 9  |-  ( y  =  w  ->  (
z  e.  y  <->  z  e.  w ) )
19 eleq2 2690 . . . . . . . . 9  |-  ( y  =  w  ->  ( A  e.  y  <->  A  e.  w ) )
2018, 19bibi12d 335 . . . . . . . 8  |-  ( y  =  w  ->  (
( z  e.  y  <-> 
A  e.  y )  <-> 
( z  e.  w  <->  A  e.  w ) ) )
2120cbvralv 3171 . . . . . . 7  |-  ( A. y  e.  J  (
z  e.  y  <->  A  e.  y )  <->  A. w  e.  J  ( z  e.  w  <->  A  e.  w
) )
2217, 21syl6bb 276 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  J  /\  A  e.  X )  /\  z  e.  U )  ->  (
( F `  z
)  =  ( F `
 A )  <->  A. w  e.  J  ( z  e.  w  <->  A  e.  w
) ) )
23 simpl2 1065 . . . . . . 7  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  J  /\  A  e.  X )  /\  z  e.  U )  ->  U  e.  J )
24 eleq2 2690 . . . . . . . . 9  |-  ( w  =  U  ->  (
z  e.  w  <->  z  e.  U ) )
25 eleq2 2690 . . . . . . . . 9  |-  ( w  =  U  ->  ( A  e.  w  <->  A  e.  U ) )
2624, 25bibi12d 335 . . . . . . . 8  |-  ( w  =  U  ->  (
( z  e.  w  <->  A  e.  w )  <->  ( z  e.  U  <->  A  e.  U
) ) )
2726rspcv 3305 . . . . . . 7  |-  ( U  e.  J  ->  ( A. w  e.  J  ( z  e.  w  <->  A  e.  w )  -> 
( z  e.  U  <->  A  e.  U ) ) )
2823, 27syl 17 . . . . . 6  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  J  /\  A  e.  X )  /\  z  e.  U )  ->  ( A. w  e.  J  ( z  e.  w  <->  A  e.  w )  -> 
( z  e.  U  <->  A  e.  U ) ) )
2922, 28sylbid 230 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  J  /\  A  e.  X )  /\  z  e.  U )  ->  (
( F `  z
)  =  ( F `
 A )  -> 
( z  e.  U  <->  A  e.  U ) ) )
30 simpr 477 . . . . 5  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  J  /\  A  e.  X )  /\  z  e.  U )  ->  z  e.  U )
31 biimp 205 . . . . 5  |-  ( ( z  e.  U  <->  A  e.  U )  ->  (
z  e.  U  ->  A  e.  U )
)
3229, 30, 31syl6ci 71 . . . 4  |-  ( ( ( J  e.  (TopOn `  X )  /\  U  e.  J  /\  A  e.  X )  /\  z  e.  U )  ->  (
( F `  z
)  =  ( F `
 A )  ->  A  e.  U )
)
3332rexlimdva 3031 . . 3  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J  /\  A  e.  X )  ->  ( E. z  e.  U  ( F `  z )  =  ( F `  A )  ->  A  e.  U ) )
3412, 33syld 47 . 2  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J  /\  A  e.  X )  ->  (
( F `  A
)  e.  ( F
" U )  ->  A  e.  U )
)
358, 34impbid 202 1  |-  ( ( J  e.  (TopOn `  X )  /\  U  e.  J  /\  A  e.  X )  ->  ( A  e.  U  <->  ( F `  A )  e.  ( F " U ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990   A.wral 2912   E.wrex 2913   {crab 2916    C_ wss 3574    |-> cmpt 4729   "cima 5117   Fun wfun 5882    Fn wfn 5883   ` cfv 5888  TopOnctopon 20715
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-sbc 3436  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-opab 4713  df-mpt 4730  df-id 5024  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-fv 5896  df-topon 20716
This theorem is referenced by:  kqsat  21534  kqdisj  21535  kqcldsat  21536  kqt0lem  21539  isr0  21540  regr1lem  21542  kqreglem1  21544  kqreglem2  21545
  Copyright terms: Public domain W3C validator