| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > symdifass | Structured version Visualization version Unicode version | ||
| Description: Symmetric difference associates. (Contributed by Scott Fenton, 24-Apr-2012.) |
| Ref | Expression |
|---|---|
| symdifass |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | biass 374 |
. . . . . . 7
| |
| 2 | 1 | notbii 310 |
. . . . . 6
|
| 3 | xor3 372 |
. . . . . . . 8
| |
| 4 | notbi 309 |
. . . . . . . 8
| |
| 5 | 3, 4 | bitr4i 267 |
. . . . . . 7
|
| 6 | 5 | con1bii 346 |
. . . . . 6
|
| 7 | xor3 372 |
. . . . . 6
| |
| 8 | 2, 6, 7 | 3bitr3ri 291 |
. . . . 5
|
| 9 | elsymdif 3849 |
. . . . . 6
| |
| 10 | 9 | bibi2i 327 |
. . . . 5
|
| 11 | elsymdif 3849 |
. . . . . 6
| |
| 12 | 11 | bibi1i 328 |
. . . . 5
|
| 13 | 8, 10, 12 | 3bitr4i 292 |
. . . 4
|
| 14 | 13 | notbii 310 |
. . 3
|
| 15 | elsymdif 3849 |
. . 3
| |
| 16 | elsymdif 3849 |
. . 3
| |
| 17 | 14, 15, 16 | 3bitr4i 292 |
. 2
|
| 18 | 17 | eqriv 2619 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-dif 3577 df-un 3579 df-symdif 3844 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |