MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  t0dist Structured version   Visualization version   Unicode version

Theorem t0dist 21129
Description: Any two distinct points in a T0 space are topologically distinguishable. (Contributed by Jeff Hankins, 1-Feb-2010.)
Hypothesis
Ref Expression
ist0.1  |-  X  = 
U. J
Assertion
Ref Expression
t0dist  |-  ( ( J  e.  Kol2  /\  ( A  e.  X  /\  B  e.  X  /\  A  =/=  B ) )  ->  E. o  e.  J  -.  ( A  e.  o  <-> 
B  e.  o ) )
Distinct variable groups:    A, o    B, o    o, J    o, X

Proof of Theorem t0dist
StepHypRef Expression
1 ist0.1 . . . . . 6  |-  X  = 
U. J
21t0sep 21128 . . . . 5  |-  ( ( J  e.  Kol2  /\  ( A  e.  X  /\  B  e.  X )
)  ->  ( A. o  e.  J  ( A  e.  o  <->  B  e.  o )  ->  A  =  B ) )
32necon3ad 2807 . . . 4  |-  ( ( J  e.  Kol2  /\  ( A  e.  X  /\  B  e.  X )
)  ->  ( A  =/=  B  ->  -.  A. o  e.  J  ( A  e.  o  <->  B  e.  o
) ) )
43exp32 631 . . 3  |-  ( J  e.  Kol2  ->  ( A  e.  X  ->  ( B  e.  X  ->  ( A  =/=  B  ->  -.  A. o  e.  J  ( A  e.  o  <->  B  e.  o ) ) ) ) )
543imp2 1282 . 2  |-  ( ( J  e.  Kol2  /\  ( A  e.  X  /\  B  e.  X  /\  A  =/=  B ) )  ->  -.  A. o  e.  J  ( A  e.  o  <->  B  e.  o
) )
6 rexnal 2995 . 2  |-  ( E. o  e.  J  -.  ( A  e.  o  <->  B  e.  o )  <->  -.  A. o  e.  J  ( A  e.  o  <->  B  e.  o
) )
75, 6sylibr 224 1  |-  ( ( J  e.  Kol2  /\  ( A  e.  X  /\  B  e.  X  /\  A  =/=  B ) )  ->  E. o  e.  J  -.  ( A  e.  o  <-> 
B  e.  o ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    /\ wa 384    /\ w3a 1037    = wceq 1483    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913   U.cuni 4436   Kol2ct0 21110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-uni 4437  df-t0 21117
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator