MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  t0sep Structured version   Visualization version   Unicode version

Theorem t0sep 21128
Description: Any two topologically indistinguishable points in a T0 space are identical. (Contributed by Mario Carneiro, 25-Aug-2015.)
Hypothesis
Ref Expression
ist0.1  |-  X  = 
U. J
Assertion
Ref Expression
t0sep  |-  ( ( J  e.  Kol2  /\  ( A  e.  X  /\  B  e.  X )
)  ->  ( A. x  e.  J  ( A  e.  x  <->  B  e.  x )  ->  A  =  B ) )
Distinct variable groups:    x, A    x, B    x, J    x, X

Proof of Theorem t0sep
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ist0.1 . . . 4  |-  X  = 
U. J
21ist0 21124 . . 3  |-  ( J  e.  Kol2  <->  ( J  e. 
Top  /\  A. y  e.  X  A. z  e.  X  ( A. x  e.  J  (
y  e.  x  <->  z  e.  x )  ->  y  =  z ) ) )
32simprbi 480 . 2  |-  ( J  e.  Kol2  ->  A. y  e.  X  A. z  e.  X  ( A. x  e.  J  (
y  e.  x  <->  z  e.  x )  ->  y  =  z ) )
4 eleq1 2689 . . . . . . 7  |-  ( y  =  A  ->  (
y  e.  x  <->  A  e.  x ) )
54bibi1d 333 . . . . . 6  |-  ( y  =  A  ->  (
( y  e.  x  <->  z  e.  x )  <->  ( A  e.  x  <->  z  e.  x
) ) )
65ralbidv 2986 . . . . 5  |-  ( y  =  A  ->  ( A. x  e.  J  ( y  e.  x  <->  z  e.  x )  <->  A. x  e.  J  ( A  e.  x  <->  z  e.  x
) ) )
7 eqeq1 2626 . . . . 5  |-  ( y  =  A  ->  (
y  =  z  <->  A  =  z ) )
86, 7imbi12d 334 . . . 4  |-  ( y  =  A  ->  (
( A. x  e.  J  ( y  e.  x  <->  z  e.  x
)  ->  y  =  z )  <->  ( A. x  e.  J  ( A  e.  x  <->  z  e.  x )  ->  A  =  z ) ) )
9 eleq1 2689 . . . . . . 7  |-  ( z  =  B  ->  (
z  e.  x  <->  B  e.  x ) )
109bibi2d 332 . . . . . 6  |-  ( z  =  B  ->  (
( A  e.  x  <->  z  e.  x )  <->  ( A  e.  x  <->  B  e.  x
) ) )
1110ralbidv 2986 . . . . 5  |-  ( z  =  B  ->  ( A. x  e.  J  ( A  e.  x  <->  z  e.  x )  <->  A. x  e.  J  ( A  e.  x  <->  B  e.  x
) ) )
12 eqeq2 2633 . . . . 5  |-  ( z  =  B  ->  ( A  =  z  <->  A  =  B ) )
1311, 12imbi12d 334 . . . 4  |-  ( z  =  B  ->  (
( A. x  e.  J  ( A  e.  x  <->  z  e.  x
)  ->  A  =  z )  <->  ( A. x  e.  J  ( A  e.  x  <->  B  e.  x )  ->  A  =  B ) ) )
148, 13rspc2va 3323 . . 3  |-  ( ( ( A  e.  X  /\  B  e.  X
)  /\  A. y  e.  X  A. z  e.  X  ( A. x  e.  J  (
y  e.  x  <->  z  e.  x )  ->  y  =  z ) )  ->  ( A. x  e.  J  ( A  e.  x  <->  B  e.  x
)  ->  A  =  B ) )
1514ancoms 469 . 2  |-  ( ( A. y  e.  X  A. z  e.  X  ( A. x  e.  J  ( y  e.  x  <->  z  e.  x )  -> 
y  =  z )  /\  ( A  e.  X  /\  B  e.  X ) )  -> 
( A. x  e.  J  ( A  e.  x  <->  B  e.  x
)  ->  A  =  B ) )
163, 15sylan 488 1  |-  ( ( J  e.  Kol2  /\  ( A  e.  X  /\  B  e.  X )
)  ->  ( A. x  e.  J  ( A  e.  x  <->  B  e.  x )  ->  A  =  B ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   U.cuni 4436   Topctop 20698   Kol2ct0 21110
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-uni 4437  df-t0 21117
This theorem is referenced by:  t0dist  21129  cnt0  21150
  Copyright terms: Public domain W3C validator