MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  t1sncld Structured version   Visualization version   Unicode version

Theorem t1sncld 21130
Description: In a T1 space, one-point sets are closed. (Contributed by Jeff Hankins, 1-Feb-2010.)
Hypothesis
Ref Expression
ist0.1  |-  X  = 
U. J
Assertion
Ref Expression
t1sncld  |-  ( ( J  e.  Fre  /\  A  e.  X )  ->  { A }  e.  ( Clsd `  J )
)

Proof of Theorem t1sncld
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 ist0.1 . . . 4  |-  X  = 
U. J
21ist1 21125 . . 3  |-  ( J  e.  Fre  <->  ( J  e.  Top  /\  A. x  e.  X  { x }  e.  ( Clsd `  J ) ) )
3 sneq 4187 . . . . 5  |-  ( x  =  A  ->  { x }  =  { A } )
43eleq1d 2686 . . . 4  |-  ( x  =  A  ->  ( { x }  e.  ( Clsd `  J )  <->  { A }  e.  (
Clsd `  J )
) )
54rspccv 3306 . . 3  |-  ( A. x  e.  X  {
x }  e.  (
Clsd `  J )  ->  ( A  e.  X  ->  { A }  e.  ( Clsd `  J )
) )
62, 5simplbiim 659 . 2  |-  ( J  e.  Fre  ->  ( A  e.  X  ->  { A }  e.  (
Clsd `  J )
) )
76imp 445 1  |-  ( ( J  e.  Fre  /\  A  e.  X )  ->  { A }  e.  ( Clsd `  J )
)
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ wa 384    = wceq 1483    e. wcel 1990   A.wral 2912   {csn 4177   U.cuni 4436   ` cfv 5888   Topctop 20698   Clsdccld 20820   Frect1 21111
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-t1 21118
This theorem is referenced by:  cnt1  21154  lpcls  21168  sncld  21175  dnsconst  21182  t1connperf  21239  r0cld  21541  tgpt1  21921  sibfinima  30401  sibfof  30402
  Copyright terms: Public domain W3C validator