Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  toycom Structured version   Visualization version   Unicode version

Theorem toycom 34260
Description: Show the commutative law for an operation  O on a toy structure class  C of commuatitive operations on  CC. This illustrates how a structure class can be partially specialized. In practice, we would ordinarily define a new constant such as "CAbel" in place of  C. (Contributed by NM, 17-Mar-2013.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
toycom.1  |-  C  =  { g  e.  Abel  |  ( Base `  g
)  =  CC }
toycom.2  |-  .+  =  ( +g  `  K )
Assertion
Ref Expression
toycom  |-  ( ( K  e.  C  /\  A  e.  CC  /\  B  e.  CC )  ->  ( A  .+  B )  =  ( B  .+  A
) )
Distinct variable group:    g, K
Allowed substitution hints:    A( g)    B( g)    C( g)    .+ ( g)

Proof of Theorem toycom
StepHypRef Expression
1 toycom.1 . . . . . 6  |-  C  =  { g  e.  Abel  |  ( Base `  g
)  =  CC }
2 ssrab2 3687 . . . . . 6  |-  { g  e.  Abel  |  ( Base `  g )  =  CC }  C_  Abel
31, 2eqsstri 3635 . . . . 5  |-  C  C_  Abel
43sseli 3599 . . . 4  |-  ( K  e.  C  ->  K  e.  Abel )
543ad2ant1 1082 . . 3  |-  ( ( K  e.  C  /\  A  e.  CC  /\  B  e.  CC )  ->  K  e.  Abel )
6 simp2 1062 . . . 4  |-  ( ( K  e.  C  /\  A  e.  CC  /\  B  e.  CC )  ->  A  e.  CC )
7 fveq2 6191 . . . . . . . 8  |-  ( g  =  K  ->  ( Base `  g )  =  ( Base `  K
) )
87eqeq1d 2624 . . . . . . 7  |-  ( g  =  K  ->  (
( Base `  g )  =  CC  <->  ( Base `  K
)  =  CC ) )
98, 1elrab2 3366 . . . . . 6  |-  ( K  e.  C  <->  ( K  e.  Abel  /\  ( Base `  K )  =  CC ) )
109simprbi 480 . . . . 5  |-  ( K  e.  C  ->  ( Base `  K )  =  CC )
11103ad2ant1 1082 . . . 4  |-  ( ( K  e.  C  /\  A  e.  CC  /\  B  e.  CC )  ->  ( Base `  K )  =  CC )
126, 11eleqtrrd 2704 . . 3  |-  ( ( K  e.  C  /\  A  e.  CC  /\  B  e.  CC )  ->  A  e.  ( Base `  K
) )
13 simp3 1063 . . . 4  |-  ( ( K  e.  C  /\  A  e.  CC  /\  B  e.  CC )  ->  B  e.  CC )
1413, 11eleqtrrd 2704 . . 3  |-  ( ( K  e.  C  /\  A  e.  CC  /\  B  e.  CC )  ->  B  e.  ( Base `  K
) )
15 eqid 2622 . . . 4  |-  ( Base `  K )  =  (
Base `  K )
16 eqid 2622 . . . 4  |-  ( +g  `  K )  =  ( +g  `  K )
1715, 16ablcom 18210 . . 3  |-  ( ( K  e.  Abel  /\  A  e.  ( Base `  K
)  /\  B  e.  ( Base `  K )
)  ->  ( A
( +g  `  K ) B )  =  ( B ( +g  `  K
) A ) )
185, 12, 14, 17syl3anc 1326 . 2  |-  ( ( K  e.  C  /\  A  e.  CC  /\  B  e.  CC )  ->  ( A ( +g  `  K
) B )  =  ( B ( +g  `  K ) A ) )
19 toycom.2 . . 3  |-  .+  =  ( +g  `  K )
2019oveqi 6663 . 2  |-  ( A 
.+  B )  =  ( A ( +g  `  K ) B )
2119oveqi 6663 . 2  |-  ( B 
.+  A )  =  ( B ( +g  `  K ) A )
2218, 20, 213eqtr4g 2681 1  |-  ( ( K  e.  C  /\  A  e.  CC  /\  B  e.  CC )  ->  ( A  .+  B )  =  ( B  .+  A
) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    /\ w3a 1037    = wceq 1483    e. wcel 1990   {crab 2916   ` cfv 5888  (class class class)co 6650   CCcc 9934   Basecbs 15857   +g cplusg 15941   Abelcabl 18194
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-rab 2921  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-op 4184  df-uni 4437  df-br 4654  df-iota 5851  df-fv 5896  df-ov 6653  df-cmn 18195  df-abl 18196
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator