| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > trlsegvdeglem2 | Structured version Visualization version Unicode version | ||
| Description: Lemma for trlsegvdeg 27087. (Contributed by AV, 20-Feb-2021.) |
| Ref | Expression |
|---|---|
| trlsegvdeg.v |
|
| trlsegvdeg.i |
|
| trlsegvdeg.f |
|
| trlsegvdeg.n |
|
| trlsegvdeg.u |
|
| trlsegvdeg.w |
|
| trlsegvdeg.vx |
|
| trlsegvdeg.vy |
|
| trlsegvdeg.vz |
|
| trlsegvdeg.ix |
|
| trlsegvdeg.iy |
|
| trlsegvdeg.iz |
|
| Ref | Expression |
|---|---|
| trlsegvdeglem2 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | trlsegvdeg.f |
. . 3
| |
| 2 | funres 5929 |
. . 3
| |
| 3 | 1, 2 | syl 17 |
. 2
|
| 4 | trlsegvdeg.ix |
. . 3
| |
| 5 | 4 | funeqd 5910 |
. 2
|
| 6 | 3, 5 | mpbird 247 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-v 3202 df-in 3581 df-ss 3588 df-br 4654 df-opab 4713 df-rel 5121 df-cnv 5122 df-co 5123 df-res 5126 df-fun 5890 |
| This theorem is referenced by: trlsegvdeg 27087 |
| Copyright terms: Public domain | W3C validator |