MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  trlsegvdeg Structured version   Visualization version   Unicode version

Theorem trlsegvdeg 27087
Description: Formerly part of proof of eupth2lem3 27096: If a trail in a graph  G induces a subgraph  Z with the vertices  V of  G and the edges being the edges of the walk, and a subgraph  X with the vertices  V of  G and the edges being the edges of the walk except the last one, and a subgraph  Y with the vertices  V of  G and one edges being the last edge of the walk, then the vertex degree of any vertex  U of  G within  Z is the sum of the vertex degree of  U within  X and the vertex degree of  U within  Y. Note that this theorem would not hold for arbitrary walks (if the last edge was identical with a previous edge, the degree of the vertices incident with this edge would not be increased because of this edge). (Contributed by Mario Carneiro, 8-Apr-2015.) (Revised by AV, 20-Feb-2021.)
Hypotheses
Ref Expression
trlsegvdeg.v  |-  V  =  (Vtx `  G )
trlsegvdeg.i  |-  I  =  (iEdg `  G )
trlsegvdeg.f  |-  ( ph  ->  Fun  I )
trlsegvdeg.n  |-  ( ph  ->  N  e.  ( 0..^ ( # `  F
) ) )
trlsegvdeg.u  |-  ( ph  ->  U  e.  V )
trlsegvdeg.w  |-  ( ph  ->  F (Trails `  G
) P )
trlsegvdeg.vx  |-  ( ph  ->  (Vtx `  X )  =  V )
trlsegvdeg.vy  |-  ( ph  ->  (Vtx `  Y )  =  V )
trlsegvdeg.vz  |-  ( ph  ->  (Vtx `  Z )  =  V )
trlsegvdeg.ix  |-  ( ph  ->  (iEdg `  X )  =  ( I  |`  ( F " ( 0..^ N ) ) ) )
trlsegvdeg.iy  |-  ( ph  ->  (iEdg `  Y )  =  { <. ( F `  N ) ,  ( I `  ( F `
 N ) )
>. } )
trlsegvdeg.iz  |-  ( ph  ->  (iEdg `  Z )  =  ( I  |`  ( F " ( 0 ... N ) ) ) )
Assertion
Ref Expression
trlsegvdeg  |-  ( ph  ->  ( (VtxDeg `  Z
) `  U )  =  ( ( (VtxDeg `  X ) `  U
)  +  ( (VtxDeg `  Y ) `  U
) ) )

Proof of Theorem trlsegvdeg
StepHypRef Expression
1 eqid 2622 . 2  |-  (iEdg `  X )  =  (iEdg `  X )
2 eqid 2622 . 2  |-  (iEdg `  Y )  =  (iEdg `  Y )
3 eqid 2622 . 2  |-  (Vtx `  X )  =  (Vtx
`  X )
4 trlsegvdeg.vy . . 3  |-  ( ph  ->  (Vtx `  Y )  =  V )
5 trlsegvdeg.vx . . 3  |-  ( ph  ->  (Vtx `  X )  =  V )
64, 5eqtr4d 2659 . 2  |-  ( ph  ->  (Vtx `  Y )  =  (Vtx `  X )
)
7 trlsegvdeg.vz . . 3  |-  ( ph  ->  (Vtx `  Z )  =  V )
87, 5eqtr4d 2659 . 2  |-  ( ph  ->  (Vtx `  Z )  =  (Vtx `  X )
)
9 trlsegvdeg.v . . . . 5  |-  V  =  (Vtx `  G )
10 trlsegvdeg.i . . . . 5  |-  I  =  (iEdg `  G )
11 trlsegvdeg.f . . . . 5  |-  ( ph  ->  Fun  I )
12 trlsegvdeg.n . . . . 5  |-  ( ph  ->  N  e.  ( 0..^ ( # `  F
) ) )
13 trlsegvdeg.u . . . . 5  |-  ( ph  ->  U  e.  V )
14 trlsegvdeg.w . . . . 5  |-  ( ph  ->  F (Trails `  G
) P )
15 trlsegvdeg.ix . . . . 5  |-  ( ph  ->  (iEdg `  X )  =  ( I  |`  ( F " ( 0..^ N ) ) ) )
16 trlsegvdeg.iy . . . . 5  |-  ( ph  ->  (iEdg `  Y )  =  { <. ( F `  N ) ,  ( I `  ( F `
 N ) )
>. } )
17 trlsegvdeg.iz . . . . 5  |-  ( ph  ->  (iEdg `  Z )  =  ( I  |`  ( F " ( 0 ... N ) ) ) )
189, 10, 11, 12, 13, 14, 5, 4, 7, 15, 16, 17trlsegvdeglem4 27083 . . . 4  |-  ( ph  ->  dom  (iEdg `  X
)  =  ( ( F " ( 0..^ N ) )  i^i 
dom  I ) )
199, 10, 11, 12, 13, 14, 5, 4, 7, 15, 16, 17trlsegvdeglem5 27084 . . . 4  |-  ( ph  ->  dom  (iEdg `  Y
)  =  { ( F `  N ) } )
2018, 19ineq12d 3815 . . 3  |-  ( ph  ->  ( dom  (iEdg `  X )  i^i  dom  (iEdg `  Y ) )  =  ( ( ( F " ( 0..^ N ) )  i^i 
dom  I )  i^i 
{ ( F `  N ) } ) )
21 fzonel 12483 . . . . . . 7  |-  -.  N  e.  ( 0..^ N )
2210trlf1 26595 . . . . . . . . 9  |-  ( F (Trails `  G ) P  ->  F : ( 0..^ ( # `  F
) ) -1-1-> dom  I
)
2314, 22syl 17 . . . . . . . 8  |-  ( ph  ->  F : ( 0..^ ( # `  F
) ) -1-1-> dom  I
)
24 elfzouz2 12484 . . . . . . . . 9  |-  ( N  e.  ( 0..^ (
# `  F )
)  ->  ( # `  F
)  e.  ( ZZ>= `  N ) )
25 fzoss2 12496 . . . . . . . . 9  |-  ( (
# `  F )  e.  ( ZZ>= `  N )  ->  ( 0..^ N ) 
C_  ( 0..^ (
# `  F )
) )
2612, 24, 253syl 18 . . . . . . . 8  |-  ( ph  ->  ( 0..^ N ) 
C_  ( 0..^ (
# `  F )
) )
27 f1elima 6520 . . . . . . . 8  |-  ( ( F : ( 0..^ ( # `  F
) ) -1-1-> dom  I  /\  N  e.  (
0..^ ( # `  F
) )  /\  (
0..^ N )  C_  ( 0..^ ( # `  F
) ) )  -> 
( ( F `  N )  e.  ( F " ( 0..^ N ) )  <->  N  e.  ( 0..^ N ) ) )
2823, 12, 26, 27syl3anc 1326 . . . . . . 7  |-  ( ph  ->  ( ( F `  N )  e.  ( F " ( 0..^ N ) )  <->  N  e.  ( 0..^ N ) ) )
2921, 28mtbiri 317 . . . . . 6  |-  ( ph  ->  -.  ( F `  N )  e.  ( F " ( 0..^ N ) ) )
3029orcd 407 . . . . 5  |-  ( ph  ->  ( -.  ( F `
 N )  e.  ( F " (
0..^ N ) )  \/  -.  ( F `
 N )  e. 
dom  I ) )
31 ianor 509 . . . . . 6  |-  ( -.  ( ( F `  N )  e.  ( F " ( 0..^ N ) )  /\  ( F `  N )  e.  dom  I )  <-> 
( -.  ( F `
 N )  e.  ( F " (
0..^ N ) )  \/  -.  ( F `
 N )  e. 
dom  I ) )
32 elin 3796 . . . . . 6  |-  ( ( F `  N )  e.  ( ( F
" ( 0..^ N ) )  i^i  dom  I )  <->  ( ( F `  N )  e.  ( F " (
0..^ N ) )  /\  ( F `  N )  e.  dom  I ) )
3331, 32xchnxbir 323 . . . . 5  |-  ( -.  ( F `  N
)  e.  ( ( F " ( 0..^ N ) )  i^i 
dom  I )  <->  ( -.  ( F `  N )  e.  ( F "
( 0..^ N ) )  \/  -.  ( F `  N )  e.  dom  I ) )
3430, 33sylibr 224 . . . 4  |-  ( ph  ->  -.  ( F `  N )  e.  ( ( F " (
0..^ N ) )  i^i  dom  I )
)
35 disjsn 4246 . . . 4  |-  ( ( ( ( F "
( 0..^ N ) )  i^i  dom  I
)  i^i  { ( F `  N ) } )  =  (/)  <->  -.  ( F `  N )  e.  ( ( F
" ( 0..^ N ) )  i^i  dom  I ) )
3634, 35sylibr 224 . . 3  |-  ( ph  ->  ( ( ( F
" ( 0..^ N ) )  i^i  dom  I )  i^i  {
( F `  N
) } )  =  (/) )
3720, 36eqtrd 2656 . 2  |-  ( ph  ->  ( dom  (iEdg `  X )  i^i  dom  (iEdg `  Y ) )  =  (/) )
389, 10, 11, 12, 13, 14, 5, 4, 7, 15, 16, 17trlsegvdeglem2 27081 . 2  |-  ( ph  ->  Fun  (iEdg `  X
) )
399, 10, 11, 12, 13, 14, 5, 4, 7, 15, 16, 17trlsegvdeglem3 27082 . 2  |-  ( ph  ->  Fun  (iEdg `  Y
) )
4013, 5eleqtrrd 2704 . 2  |-  ( ph  ->  U  e.  (Vtx `  X ) )
41 f1f 6101 . . . . 5  |-  ( F : ( 0..^ (
# `  F )
) -1-1-> dom  I  ->  F : ( 0..^ (
# `  F )
) --> dom  I )
4214, 22, 413syl 18 . . . 4  |-  ( ph  ->  F : ( 0..^ ( # `  F
) ) --> dom  I
)
4311, 42, 12resunimafz0 13229 . . 3  |-  ( ph  ->  ( I  |`  ( F " ( 0 ... N ) ) )  =  ( ( I  |`  ( F " (
0..^ N ) ) )  u.  { <. ( F `  N ) ,  ( I `  ( F `  N ) ) >. } ) )
4415, 16uneq12d 3768 . . 3  |-  ( ph  ->  ( (iEdg `  X
)  u.  (iEdg `  Y ) )  =  ( ( I  |`  ( F " ( 0..^ N ) ) )  u.  { <. ( F `  N ) ,  ( I `  ( F `  N ) ) >. } ) )
4543, 17, 443eqtr4d 2666 . 2  |-  ( ph  ->  (iEdg `  Z )  =  ( (iEdg `  X )  u.  (iEdg `  Y ) ) )
469, 10, 11, 12, 13, 14, 5, 4, 7, 15, 16, 17trlsegvdeglem6 27085 . 2  |-  ( ph  ->  dom  (iEdg `  X
)  e.  Fin )
479, 10, 11, 12, 13, 14, 5, 4, 7, 15, 16, 17trlsegvdeglem7 27086 . 2  |-  ( ph  ->  dom  (iEdg `  Y
)  e.  Fin )
481, 2, 3, 6, 8, 37, 38, 39, 40, 45, 46, 47vtxdfiun 26378 1  |-  ( ph  ->  ( (VtxDeg `  Z
) `  U )  =  ( ( (VtxDeg `  X ) `  U
)  +  ( (VtxDeg `  Y ) `  U
) ) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    <-> wb 196    \/ wo 383    /\ wa 384    = wceq 1483    e. wcel 1990    u. cun 3572    i^i cin 3573    C_ wss 3574   (/)c0 3915   {csn 4177   <.cop 4183   class class class wbr 4653   dom cdm 5114    |` cres 5116   "cima 5117   Fun wfun 5882   -->wf 5884   -1-1->wf1 5885   ` cfv 5888  (class class class)co 6650   0cc0 9936    + caddc 9939   ZZ>=cuz 11687   ...cfz 12326  ..^cfzo 12465   #chash 13117  Vtxcvtx 25874  iEdgciedg 25875  VtxDegcvtxdg 26361  Trailsctrls 26587
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-8 1992  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-rep 4771  ax-sep 4781  ax-nul 4789  ax-pow 4843  ax-pr 4906  ax-un 6949  ax-cnex 9992  ax-resscn 9993  ax-1cn 9994  ax-icn 9995  ax-addcl 9996  ax-addrcl 9997  ax-mulcl 9998  ax-mulrcl 9999  ax-mulcom 10000  ax-addass 10001  ax-mulass 10002  ax-distr 10003  ax-i2m1 10004  ax-1ne0 10005  ax-1rid 10006  ax-rnegex 10007  ax-rrecex 10008  ax-cnre 10009  ax-pre-lttri 10010  ax-pre-lttrn 10011  ax-pre-ltadd 10012  ax-pre-mulgt0 10013
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ifp 1013  df-3or 1038  df-3an 1039  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-nel 2898  df-ral 2917  df-rex 2918  df-reu 2919  df-rmo 2920  df-rab 2921  df-v 3202  df-sbc 3436  df-csb 3534  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-pss 3590  df-nul 3916  df-if 4087  df-pw 4160  df-sn 4178  df-pr 4180  df-tp 4182  df-op 4184  df-uni 4437  df-int 4476  df-iun 4522  df-br 4654  df-opab 4713  df-mpt 4730  df-tr 4753  df-id 5024  df-eprel 5029  df-po 5035  df-so 5036  df-fr 5073  df-we 5075  df-xp 5120  df-rel 5121  df-cnv 5122  df-co 5123  df-dm 5124  df-rn 5125  df-res 5126  df-ima 5127  df-pred 5680  df-ord 5726  df-on 5727  df-lim 5728  df-suc 5729  df-iota 5851  df-fun 5890  df-fn 5891  df-f 5892  df-f1 5893  df-fo 5894  df-f1o 5895  df-fv 5896  df-riota 6611  df-ov 6653  df-oprab 6654  df-mpt2 6655  df-om 7066  df-1st 7168  df-2nd 7169  df-wrecs 7407  df-recs 7468  df-rdg 7506  df-1o 7560  df-oadd 7564  df-er 7742  df-map 7859  df-pm 7860  df-en 7956  df-dom 7957  df-sdom 7958  df-fin 7959  df-card 8765  df-cda 8990  df-pnf 10076  df-mnf 10077  df-xr 10078  df-ltxr 10079  df-le 10080  df-sub 10268  df-neg 10269  df-nn 11021  df-n0 11293  df-xnn0 11364  df-z 11378  df-uz 11688  df-xadd 11947  df-fz 12327  df-fzo 12466  df-hash 13118  df-word 13299  df-vtxdg 26362  df-wlks 26495  df-trls 26589
This theorem is referenced by:  eupth2lem3lem7  27094
  Copyright terms: Public domain W3C validator