| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uniinn0 | Structured version Visualization version Unicode version | ||
| Description: Sufficient and necessary condition for a union to intersect with a given set. (Contributed by Thierry Arnoux, 27-Jan-2020.) |
| Ref | Expression |
|---|---|
| uniinn0 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nne 2798 |
. . . 4
| |
| 2 | 1 | ralbii 2980 |
. . 3
|
| 3 | ralnex 2992 |
. . 3
| |
| 4 | unissb 4469 |
. . . 4
| |
| 5 | disj2 4024 |
. . . 4
| |
| 6 | disj2 4024 |
. . . . 5
| |
| 7 | 6 | ralbii 2980 |
. . . 4
|
| 8 | 4, 5, 7 | 3bitr4ri 293 |
. . 3
|
| 9 | 2, 3, 8 | 3bitr3i 290 |
. 2
|
| 10 | 9 | necon1abii 2842 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-in 3581 df-ss 3588 df-nul 3916 df-uni 4437 |
| This theorem is referenced by: locfinreflem 29907 |
| Copyright terms: Public domain | W3C validator |