| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > uniinn0 | Structured version Visualization version GIF version | ||
| Description: Sufficient and necessary condition for a union to intersect with a given set. (Contributed by Thierry Arnoux, 27-Jan-2020.) |
| Ref | Expression |
|---|---|
| uniinn0 | ⊢ ((∪ 𝐴 ∩ 𝐵) ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐵) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nne 2798 | . . . 4 ⊢ (¬ (𝑥 ∩ 𝐵) ≠ ∅ ↔ (𝑥 ∩ 𝐵) = ∅) | |
| 2 | 1 | ralbii 2980 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ (𝑥 ∩ 𝐵) ≠ ∅ ↔ ∀𝑥 ∈ 𝐴 (𝑥 ∩ 𝐵) = ∅) |
| 3 | ralnex 2992 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 ¬ (𝑥 ∩ 𝐵) ≠ ∅ ↔ ¬ ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐵) ≠ ∅) | |
| 4 | unissb 4469 | . . . 4 ⊢ (∪ 𝐴 ⊆ (V ∖ 𝐵) ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ (V ∖ 𝐵)) | |
| 5 | disj2 4024 | . . . 4 ⊢ ((∪ 𝐴 ∩ 𝐵) = ∅ ↔ ∪ 𝐴 ⊆ (V ∖ 𝐵)) | |
| 6 | disj2 4024 | . . . . 5 ⊢ ((𝑥 ∩ 𝐵) = ∅ ↔ 𝑥 ⊆ (V ∖ 𝐵)) | |
| 7 | 6 | ralbii 2980 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∩ 𝐵) = ∅ ↔ ∀𝑥 ∈ 𝐴 𝑥 ⊆ (V ∖ 𝐵)) |
| 8 | 4, 5, 7 | 3bitr4ri 293 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 (𝑥 ∩ 𝐵) = ∅ ↔ (∪ 𝐴 ∩ 𝐵) = ∅) |
| 9 | 2, 3, 8 | 3bitr3i 290 | . 2 ⊢ (¬ ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐵) ≠ ∅ ↔ (∪ 𝐴 ∩ 𝐵) = ∅) |
| 10 | 9 | necon1abii 2842 | 1 ⊢ ((∪ 𝐴 ∩ 𝐵) ≠ ∅ ↔ ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐵) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ↔ wb 196 = wceq 1483 ≠ wne 2794 ∀wral 2912 ∃wrex 2913 Vcvv 3200 ∖ cdif 3571 ∩ cin 3573 ⊆ wss 3574 ∅c0 3915 ∪ cuni 4436 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ne 2795 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-in 3581 df-ss 3588 df-nul 3916 df-uni 4437 |
| This theorem is referenced by: locfinreflem 29907 |
| Copyright terms: Public domain | W3C validator |