Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  unisnif Structured version   Visualization version   Unicode version

Theorem unisnif 32032
Description: Express union of singleton in terms of  if. (Contributed by Scott Fenton, 27-Mar-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
unisnif  |-  U. { A }  =  if ( A  e.  _V ,  A ,  (/) )

Proof of Theorem unisnif
StepHypRef Expression
1 iftrue 4092 . . . 4  |-  ( A  e.  _V  ->  if ( A  e.  _V ,  A ,  (/) )  =  A )
2 unisng 4452 . . . 4  |-  ( A  e.  _V  ->  U. { A }  =  A
)
31, 2eqtr4d 2659 . . 3  |-  ( A  e.  _V  ->  if ( A  e.  _V ,  A ,  (/) )  = 
U. { A }
)
4 iffalse 4095 . . . 4  |-  ( -.  A  e.  _V  ->  if ( A  e.  _V ,  A ,  (/) )  =  (/) )
5 snprc 4253 . . . . . . 7  |-  ( -.  A  e.  _V  <->  { A }  =  (/) )
65biimpi 206 . . . . . 6  |-  ( -.  A  e.  _V  ->  { A }  =  (/) )
76unieqd 4446 . . . . 5  |-  ( -.  A  e.  _V  ->  U. { A }  =  U. (/) )
8 uni0 4465 . . . . 5  |-  U. (/)  =  (/)
97, 8syl6eq 2672 . . . 4  |-  ( -.  A  e.  _V  ->  U. { A }  =  (/) )
104, 9eqtr4d 2659 . . 3  |-  ( -.  A  e.  _V  ->  if ( A  e.  _V ,  A ,  (/) )  = 
U. { A }
)
113, 10pm2.61i 176 . 2  |-  if ( A  e.  _V ,  A ,  (/) )  = 
U. { A }
1211eqcomi 2631 1  |-  U. { A }  =  if ( A  e.  _V ,  A ,  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    = wceq 1483    e. wcel 1990   _Vcvv 3200   (/)c0 3915   ifcif 4086   {csn 4177   U.cuni 4436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-un 3579  df-in 3581  df-ss 3588  df-nul 3916  df-if 4087  df-sn 4178  df-pr 4180  df-uni 4437
This theorem is referenced by:  dfrdg4  32058
  Copyright terms: Public domain W3C validator