| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-equsb4 | Structured version Visualization version Unicode version | ||
| Description: Substitution applied to an atomic wff. The distinctor antecedent is more general than a distinct variable constraint. (Contributed by Wolf Lammen, 26-Jun-2019.) |
| Ref | Expression |
|---|---|
| wl-equsb4 |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfeqf 2301 |
. . . 4
| |
| 2 | 1 | ex 450 |
. . 3
|
| 3 | sbft 2379 |
. . 3
| |
| 4 | 2, 3 | syl6com 37 |
. 2
|
| 5 | sbequ12r 2112 |
. . . 4
| |
| 6 | 5 | equcoms 1947 |
. . 3
|
| 7 | 6 | sps 2055 |
. 2
|
| 8 | 4, 7 | pm2.61d2 172 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |