| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > nfeqf | Structured version Visualization version Unicode version | ||
| Description: A variable is effectively
not free in an equality if it is not either of
the involved variables. |
| Ref | Expression |
|---|---|
| nfeqf |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfna1 2029 |
. . 3
| |
| 2 | nfna1 2029 |
. . 3
| |
| 3 | 1, 2 | nfan 1828 |
. 2
|
| 4 | equviniva 1960 |
. . 3
| |
| 5 | dveeq1 2300 |
. . . . . . . 8
| |
| 6 | 5 | imp 445 |
. . . . . . 7
|
| 7 | dveeq1 2300 |
. . . . . . . 8
| |
| 8 | 7 | imp 445 |
. . . . . . 7
|
| 9 | equtr2 1954 |
. . . . . . . 8
| |
| 10 | 9 | alanimi 1744 |
. . . . . . 7
|
| 11 | 6, 8, 10 | syl2an 494 |
. . . . . 6
|
| 12 | 11 | an4s 869 |
. . . . 5
|
| 13 | 12 | ex 450 |
. . . 4
|
| 14 | 13 | exlimdv 1861 |
. . 3
|
| 15 | 4, 14 | syl5 34 |
. 2
|
| 16 | 3, 15 | nf5d 2118 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 |
| This theorem is referenced by: axc9 2302 dvelimf 2334 equvel 2347 2ax6elem 2449 wl-exeq 33321 wl-nfeqfb 33323 wl-equsb4 33338 wl-2sb6d 33341 wl-sbalnae 33345 |
| Copyright terms: Public domain | W3C validator |