| Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-sb6rft | Structured version Visualization version Unicode version | ||
| Description: A specialization of wl-equsal1t 33327. Closed form of sb6rf 2423. (Contributed by Wolf Lammen, 27-Jul-2019.) |
| Ref | Expression |
|---|---|
| wl-sb6rft |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfnf1 2031 |
. . 3
| |
| 2 | id 22 |
. . 3
| |
| 3 | sbequ12r 2112 |
. . . 4
| |
| 4 | 3 | a1i 11 |
. . 3
|
| 5 | 1, 2, 4 | wl-equsald 33325 |
. 2
|
| 6 | 5 | bicomd 213 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 ax-13 2246 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 df-sb 1881 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |