Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-sb6rft Structured version   Visualization version   Unicode version

Theorem wl-sb6rft 33330
Description: A specialization of wl-equsal1t 33327. Closed form of sb6rf 2423. (Contributed by Wolf Lammen, 27-Jul-2019.)
Assertion
Ref Expression
wl-sb6rft  |-  ( F/ x ph  ->  ( ph 
<-> 
A. x ( x  =  y  ->  [ x  /  y ] ph ) ) )

Proof of Theorem wl-sb6rft
StepHypRef Expression
1 nfnf1 2031 . . 3  |-  F/ x F/ x ph
2 id 22 . . 3  |-  ( F/ x ph  ->  F/ x ph )
3 sbequ12r 2112 . . . 4  |-  ( x  =  y  ->  ( [ x  /  y ] ph  <->  ph ) )
43a1i 11 . . 3  |-  ( F/ x ph  ->  (
x  =  y  -> 
( [ x  / 
y ] ph  <->  ph ) ) )
51, 2, 4wl-equsald 33325 . 2  |-  ( F/ x ph  ->  ( A. x ( x  =  y  ->  [ x  /  y ] ph ) 
<-> 
ph ) )
65bicomd 213 1  |-  ( F/ x ph  ->  ( ph 
<-> 
A. x ( x  =  y  ->  [ x  /  y ] ph ) ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196   A.wal 1481   F/wnf 1708   [wsb 1880
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-ex 1705  df-nf 1710  df-sb 1881
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator