![]() |
Mathbox for Wolf Lammen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > wl-sb6rft | Structured version Visualization version GIF version |
Description: A specialization of wl-equsal1t 33327. Closed form of sb6rf 2423. (Contributed by Wolf Lammen, 27-Jul-2019.) |
Ref | Expression |
---|---|
wl-sb6rft | ⊢ (Ⅎ𝑥𝜑 → (𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → [𝑥 / 𝑦]𝜑))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfnf1 2031 | . . 3 ⊢ Ⅎ𝑥Ⅎ𝑥𝜑 | |
2 | id 22 | . . 3 ⊢ (Ⅎ𝑥𝜑 → Ⅎ𝑥𝜑) | |
3 | sbequ12r 2112 | . . . 4 ⊢ (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑)) | |
4 | 3 | a1i 11 | . . 3 ⊢ (Ⅎ𝑥𝜑 → (𝑥 = 𝑦 → ([𝑥 / 𝑦]𝜑 ↔ 𝜑))) |
5 | 1, 2, 4 | wl-equsald 33325 | . 2 ⊢ (Ⅎ𝑥𝜑 → (∀𝑥(𝑥 = 𝑦 → [𝑥 / 𝑦]𝜑) ↔ 𝜑)) |
6 | 5 | bicomd 213 | 1 ⊢ (Ⅎ𝑥𝜑 → (𝜑 ↔ ∀𝑥(𝑥 = 𝑦 → [𝑥 / 𝑦]𝜑))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∀wal 1481 Ⅎwnf 1708 [wsb 1880 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-10 2019 ax-12 2047 ax-13 2246 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-ex 1705 df-nf 1710 df-sb 1881 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |