Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-sb8mot Structured version   Visualization version   Unicode version

Theorem wl-sb8mot 33360
Description: Substitution of variable in universal quantifier. Closed form of sb8mo 2504.

This theorem relates to wl-mo3t 33358, since replacing  ph with  [ y  /  x ] ph in the latter yields subexpressions like  [ x  / 
y ] [ y  /  x ] ph, which can be reduced to  ph via sbft 2379 and sbco 2412. So  E* x ph  <->  E* y [ y  /  x ] ph is provable from wl-mo3t 33358 in a simple fashion, unfortunately only if  x and  y are known to be distinct. To avoid any hassle with distinctors, we prefer to derive this theorem independently, ignoring the close connection between both theorems. From an educational standpoint, one would assume wl-mo3t 33358 to be more fundamental, as it hints how the "at most one" objects on both sides of the biconditional correlate (they are the same), if they exist at all, and then prove this theorem from it. (Contributed by Wolf Lammen, 11-Aug-2019.)

Assertion
Ref Expression
wl-sb8mot  |-  ( A. x F/ y ph  ->  ( E* x ph  <->  E* y [ y  /  x ] ph ) )

Proof of Theorem wl-sb8mot
StepHypRef Expression
1 wl-sb8et 33334 . . 3  |-  ( A. x F/ y ph  ->  ( E. x ph  <->  E. y [ y  /  x ] ph ) )
2 wl-sb8eut 33359 . . 3  |-  ( A. x F/ y ph  ->  ( E! x ph  <->  E! y [ y  /  x ] ph ) )
31, 2imbi12d 334 . 2  |-  ( A. x F/ y ph  ->  ( ( E. x ph  ->  E! x ph )  <->  ( E. y [ y  /  x ] ph  ->  E! y [ y  /  x ] ph ) ) )
4 df-mo 2475 . 2  |-  ( E* x ph  <->  ( E. x ph  ->  E! x ph ) )
5 df-mo 2475 . 2  |-  ( E* y [ y  /  x ] ph  <->  ( E. y [ y  /  x ] ph  ->  E! y [ y  /  x ] ph ) )
63, 4, 53bitr4g 303 1  |-  ( A. x F/ y ph  ->  ( E* x ph  <->  E* y [ y  /  x ] ph ) )
Colors of variables: wff setvar class
Syntax hints:    -> wi 4    <-> wb 196   A.wal 1481   E.wex 1704   F/wnf 1708   [wsb 1880   E!weu 2470   E*wmo 2471
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator