Users' Mathboxes Mathbox for Wolf Lammen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  wl-spae Structured version   Visualization version   Unicode version

Theorem wl-spae 33306
Description: Prove an instance of sp 2053 from ax-13 2246 and Tarski's FOL only, without distinct variable conditions. The antecedent  A. x x  =  y holds in a multi-object universe only if 
y is substituted for  x, or vice versa, i.e. both variables are effectively the same. The converse  -.  A. x x  =  y indicates that both variables are distinct, and it so provides a simple translation of a distinct variable condition to a logical term. In case studies  A. x x  =  y and 
-.  A. x x  =  y can help eliminating distinct variable conditions.

The antecedent  A. x x  =  y is expressed in the theorem's name by the abbreviation ae standing for 'all equal'.

Note that we cannot provide a logical predicate telling us directly whether a logical expression contains a particular variable, as such a construct would usually contradict ax-12 2047.

Note that this theorem is also provable from ax-12 2047 alone, so you can pick the axiom it is based on.

Compare this result to 19.3v 1897 and spaev 1978 having distinct variable conditions, but a smaller footprint on axiom usage. (Contributed by Wolf Lammen, 5-Apr-2021.)

Assertion
Ref Expression
wl-spae  |-  ( A. x  x  =  y  ->  x  =  y )

Proof of Theorem wl-spae
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 aeveq 1982 . . . . 5  |-  ( A. x  x  =  z  ->  x  =  y )
21adantl 482 . . . 4  |-  ( ( y  =  z  /\  A. x  x  =  z )  ->  x  =  y )
32a1d 25 . . 3  |-  ( ( y  =  z  /\  A. x  x  =  z )  ->  ( A. x  x  =  y  ->  x  =  y ) )
4 ax13v 2247 . . . . . . 7  |-  ( -.  x  =  y  -> 
( y  =  z  ->  A. x  y  =  z ) )
5 equtrr 1949 . . . . . . . . 9  |-  ( y  =  z  ->  (
x  =  y  ->  x  =  z )
)
65al2imi 1743 . . . . . . . 8  |-  ( A. x  y  =  z  ->  ( A. x  x  =  y  ->  A. x  x  =  z )
)
76con3d 148 . . . . . . 7  |-  ( A. x  y  =  z  ->  ( -.  A. x  x  =  z  ->  -. 
A. x  x  =  y ) )
84, 7syl6 35 . . . . . 6  |-  ( -.  x  =  y  -> 
( y  =  z  ->  ( -.  A. x  x  =  z  ->  -.  A. x  x  =  y ) ) )
98com13 88 . . . . 5  |-  ( -. 
A. x  x  =  z  ->  ( y  =  z  ->  ( -.  x  =  y  ->  -.  A. x  x  =  y ) ) )
109impcom 446 . . . 4  |-  ( ( y  =  z  /\  -.  A. x  x  =  z )  ->  ( -.  x  =  y  ->  -.  A. x  x  =  y ) )
1110con4d 114 . . 3  |-  ( ( y  =  z  /\  -.  A. x  x  =  z )  ->  ( A. x  x  =  y  ->  x  =  y ) )
123, 11pm2.61dan 832 . 2  |-  ( y  =  z  ->  ( A. x  x  =  y  ->  x  =  y ) )
13 ax6evr 1942 . 2  |-  E. z 
y  =  z
1412, 13exlimiiv 1859 1  |-  ( A. x  x  =  y  ->  x  =  y )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384   A.wal 1481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-13 2246
This theorem depends on definitions:  df-bi 197  df-an 386  df-ex 1705
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator