| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zfac | Structured version Visualization version Unicode version | ||
| Description: Axiom of Choice expressed with the fewest number of different variables. The penultimate step shows the logical equivalence to ax-ac 9281. (New usage is discouraged.) (Contributed by NM, 14-Aug-2003.) |
| Ref | Expression |
|---|---|
| zfac |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ax-ac 9281 |
. 2
| |
| 2 | equequ2 1953 |
. . . . . . . . . 10
| |
| 3 | 2 | bibi2d 332 |
. . . . . . . . 9
|
| 4 | elequ2 2004 |
. . . . . . . . . . . . 13
| |
| 5 | 4 | anbi2d 740 |
. . . . . . . . . . . 12
|
| 6 | elequ2 2004 |
. . . . . . . . . . . . 13
| |
| 7 | elequ1 1997 |
. . . . . . . . . . . . 13
| |
| 8 | 6, 7 | anbi12d 747 |
. . . . . . . . . . . 12
|
| 9 | 5, 8 | anbi12d 747 |
. . . . . . . . . . 11
|
| 10 | 9 | cbvexv 2275 |
. . . . . . . . . 10
|
| 11 | 10 | bibi1i 328 |
. . . . . . . . 9
|
| 12 | 3, 11 | syl6bb 276 |
. . . . . . . 8
|
| 13 | 12 | albidv 1849 |
. . . . . . 7
|
| 14 | elequ1 1997 |
. . . . . . . . . . . 12
| |
| 15 | 14 | anbi1d 741 |
. . . . . . . . . . 11
|
| 16 | elequ1 1997 |
. . . . . . . . . . . 12
| |
| 17 | 16 | anbi1d 741 |
. . . . . . . . . . 11
|
| 18 | 15, 17 | anbi12d 747 |
. . . . . . . . . 10
|
| 19 | 18 | exbidv 1850 |
. . . . . . . . 9
|
| 20 | equequ1 1952 |
. . . . . . . . 9
| |
| 21 | 19, 20 | bibi12d 335 |
. . . . . . . 8
|
| 22 | 21 | cbvalv 2273 |
. . . . . . 7
|
| 23 | 13, 22 | syl6bb 276 |
. . . . . 6
|
| 24 | 23 | cbvexv 2275 |
. . . . 5
|
| 25 | 24 | imbi2i 326 |
. . . 4
|
| 26 | 25 | 2albii 1748 |
. . 3
|
| 27 | 26 | exbii 1774 |
. 2
|
| 28 | 1, 27 | mpbi 220 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-11 2034 ax-12 2047 ax-13 2246 ax-ac 9281 |
| This theorem depends on definitions: df-bi 197 df-an 386 df-ex 1705 |
| This theorem is referenced by: axacndlem4 9432 |
| Copyright terms: Public domain | W3C validator |