| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > zfregcl | Structured version Visualization version Unicode version | ||
| Description: The Axiom of Regularity with class variables. (Contributed by NM, 5-Aug-1994.) Replace sethood hypothesis with sethood antecedent. (Revised by BJ, 27-Apr-2021.) |
| Ref | Expression |
|---|---|
| zfregcl |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eleq2 2690 |
. . . 4
| |
| 2 | 1 | exbidv 1850 |
. . 3
|
| 3 | eleq2 2690 |
. . . . . 6
| |
| 4 | 3 | notbid 308 |
. . . . 5
|
| 5 | 4 | ralbidv 2986 |
. . . 4
|
| 6 | 5 | rexeqbi1dv 3147 |
. . 3
|
| 7 | 2, 6 | imbi12d 334 |
. 2
|
| 8 | nfre1 3005 |
. . 3
| |
| 9 | axreg2 8498 |
. . . 4
| |
| 10 | df-ral 2917 |
. . . . . 6
| |
| 11 | 10 | rexbii 3041 |
. . . . 5
|
| 12 | df-rex 2918 |
. . . . 5
| |
| 13 | 11, 12 | bitr2i 265 |
. . . 4
|
| 14 | 9, 13 | sylib 208 |
. . 3
|
| 15 | 8, 14 | exlimi 2086 |
. 2
|
| 16 | 7, 15 | vtoclg 3266 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-ext 2602 ax-reg 8497 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 |
| This theorem is referenced by: zfreg 8500 elirrv 8504 |
| Copyright terms: Public domain | W3C validator |