MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zfreg Structured version   Visualization version   Unicode version

Theorem zfreg 8500
Description: The Axiom of Regularity using abbreviations. Axiom 6 of [TakeutiZaring] p. 21. This is called the "weak form." Axiom Reg of [BellMachover] p. 480. There is also a "strong form," not requiring that  A be a set, that can be proved with more difficulty (see zfregs 8608). (Contributed by NM, 26-Nov-1995.) Replace sethood hypothesis with sethood antecedent. (Revised by BJ, 27-Apr-2021.)
Assertion
Ref Expression
zfreg  |-  ( ( A  e.  V  /\  A  =/=  (/) )  ->  E. x  e.  A  ( x  i^i  A )  =  (/) )
Distinct variable group:    x, A
Allowed substitution hint:    V( x)

Proof of Theorem zfreg
Dummy variable  y is distinct from all other variables.
StepHypRef Expression
1 n0 3931 . . . 4  |-  ( A  =/=  (/)  <->  E. x  x  e.  A )
21biimpi 206 . . 3  |-  ( A  =/=  (/)  ->  E. x  x  e.  A )
32anim2i 593 . 2  |-  ( ( A  e.  V  /\  A  =/=  (/) )  ->  ( A  e.  V  /\  E. x  x  e.  A
) )
4 zfregcl 8499 . . 3  |-  ( A  e.  V  ->  ( E. x  x  e.  A  ->  E. x  e.  A  A. y  e.  x  -.  y  e.  A
) )
54imp 445 . 2  |-  ( ( A  e.  V  /\  E. x  x  e.  A
)  ->  E. x  e.  A  A. y  e.  x  -.  y  e.  A )
6 disj 4017 . . . 4  |-  ( ( x  i^i  A )  =  (/)  <->  A. y  e.  x  -.  y  e.  A
)
76rexbii 3041 . . 3  |-  ( E. x  e.  A  ( x  i^i  A )  =  (/)  <->  E. x  e.  A  A. y  e.  x  -.  y  e.  A
)
87biimpri 218 . 2  |-  ( E. x  e.  A  A. y  e.  x  -.  y  e.  A  ->  E. x  e.  A  ( x  i^i  A )  =  (/) )
93, 5, 83syl 18 1  |-  ( ( A  e.  V  /\  A  =/=  (/) )  ->  E. x  e.  A  ( x  i^i  A )  =  (/) )
Colors of variables: wff setvar class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 384    = wceq 1483   E.wex 1704    e. wcel 1990    =/= wne 2794   A.wral 2912   E.wrex 2913    i^i cin 3573   (/)c0 3915
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602  ax-reg 8497
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ne 2795  df-ral 2917  df-rex 2918  df-v 3202  df-dif 3577  df-in 3581  df-nul 3916
This theorem is referenced by:  zfregfr  8509  en3lp  8513  inf3lem3  8527  bj-restreg  33052  setindtr  37591
  Copyright terms: Public domain W3C validator