| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elirrv | Structured version Visualization version Unicode version | ||
| Description: The membership relation is irreflexive: no set is a member of itself. Theorem 105 of [Suppes] p. 54. (This is trivial to prove from zfregfr 8509 and efrirr 5095, but this proof is direct from the Axiom of Regularity.) (Contributed by NM, 19-Aug-1993.) |
| Ref | Expression |
|---|---|
| elirrv |
|
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex 4908 |
. . 3
| |
| 2 | eleq1 2689 |
. . . 4
| |
| 3 | vsnid 4209 |
. . . 4
| |
| 4 | 2, 3 | spei 2261 |
. . 3
|
| 5 | zfregcl 8499 |
. . 3
| |
| 6 | 1, 4, 5 | mp2 9 |
. 2
|
| 7 | velsn 4193 |
. . . . . . 7
| |
| 8 | ax9 2003 |
. . . . . . . . 9
| |
| 9 | 8 | equcoms 1947 |
. . . . . . . 8
|
| 10 | 9 | com12 32 |
. . . . . . 7
|
| 11 | 7, 10 | syl5bi 232 |
. . . . . 6
|
| 12 | eleq1 2689 |
. . . . . . . . 9
| |
| 13 | 12 | notbid 308 |
. . . . . . . 8
|
| 14 | 13 | rspccv 3306 |
. . . . . . 7
|
| 15 | 3, 14 | mt2i 132 |
. . . . . 6
|
| 16 | 11, 15 | nsyli 155 |
. . . . 5
|
| 17 | 16 | con2d 129 |
. . . 4
|
| 18 | 17 | ralrimiv 2965 |
. . 3
|
| 19 | ralnex 2992 |
. . 3
| |
| 20 | 18, 19 | sylib 208 |
. 2
|
| 21 | 6, 20 | mt2 191 |
1
|
| Colors of variables: wff setvar class |
| Syntax hints: |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-reg 8497 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-v 3202 df-dif 3577 df-un 3579 df-nul 3916 df-sn 4178 df-pr 4180 |
| This theorem is referenced by: elirr 8505 ruv 8507 dfac2 8953 nd1 9409 nd2 9410 nd3 9411 axunnd 9418 axregndlem1 9424 axregndlem2 9425 axregnd 9426 elpotr 31686 exnel 31708 distel 31709 |
| Copyright terms: Public domain | W3C validator |