MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  0disj Structured version   Visualization version   GIF version

Theorem 0disj 4645
Description: Any collection of empty sets is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
0disj Disj 𝑥𝐴

Proof of Theorem 0disj
StepHypRef Expression
1 0ss 3972 . . 3 ∅ ⊆ {𝑥}
21rgenw 2924 . 2 𝑥𝐴 ∅ ⊆ {𝑥}
3 sndisj 4644 . 2 Disj 𝑥𝐴 {𝑥}
4 disjss2 4623 . 2 (∀𝑥𝐴 ∅ ⊆ {𝑥} → (Disj 𝑥𝐴 {𝑥} → Disj 𝑥𝐴 ∅))
52, 3, 4mp2 9 1 Disj 𝑥𝐴
Colors of variables: wff setvar class
Syntax hints:  wral 2912  wss 3574  c0 3915  {csn 4177  Disj wdisj 4620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-ral 2917  df-rmo 2920  df-v 3202  df-dif 3577  df-in 3581  df-ss 3588  df-nul 3916  df-sn 4178  df-disj 4621
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator