![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > disjss2 | Structured version Visualization version GIF version |
Description: If each element of a collection is contained in a disjoint collection, the original collection is also disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
Ref | Expression |
---|---|
disjss2 | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (Disj 𝑥 ∈ 𝐴 𝐶 → Disj 𝑥 ∈ 𝐴 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel 3597 | . . . . 5 ⊢ (𝐵 ⊆ 𝐶 → (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶)) | |
2 | 1 | ralimi 2952 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶)) |
3 | rmoim 3407 | . . . 4 ⊢ (∀𝑥 ∈ 𝐴 (𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶) → (∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 → ∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) | |
4 | 2, 3 | syl 17 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 → ∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) |
5 | 4 | alimdv 1845 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 → ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵)) |
6 | df-disj 4621 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐶 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐶) | |
7 | df-disj 4621 | . 2 ⊢ (Disj 𝑥 ∈ 𝐴 𝐵 ↔ ∀𝑦∃*𝑥 ∈ 𝐴 𝑦 ∈ 𝐵) | |
8 | 5, 6, 7 | 3imtr4g 285 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → (Disj 𝑥 ∈ 𝐴 𝐶 → Disj 𝑥 ∈ 𝐴 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∀wal 1481 ∈ wcel 1990 ∀wral 2912 ∃*wrmo 2915 ⊆ wss 3574 Disj wdisj 4620 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-ral 2917 df-rmo 2920 df-in 3581 df-ss 3588 df-disj 4621 |
This theorem is referenced by: disjeq2 4624 0disj 4645 uniioombllem2 23351 uniioombllem4 23354 disjxwwlksn 26799 disjxwwlkn 26808 fusgreghash2wspv 27199 fsumiunss 39807 |
Copyright terms: Public domain | W3C validator |