MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  disjxsn Structured version   Visualization version   GIF version

Theorem disjxsn 4646
Description: A singleton collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
disjxsn Disj 𝑥 ∈ {𝐴}𝐵
Distinct variable group:   𝑥,𝐴
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem disjxsn
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 dfdisj2 4622 . 2 (Disj 𝑥 ∈ {𝐴}𝐵 ↔ ∀𝑦∃*𝑥(𝑥 ∈ {𝐴} ∧ 𝑦𝐵))
2 moeq 3382 . . 3 ∃*𝑥 𝑥 = 𝐴
3 elsni 4194 . . . . 5 (𝑥 ∈ {𝐴} → 𝑥 = 𝐴)
43adantr 481 . . . 4 ((𝑥 ∈ {𝐴} ∧ 𝑦𝐵) → 𝑥 = 𝐴)
54moimi 2520 . . 3 (∃*𝑥 𝑥 = 𝐴 → ∃*𝑥(𝑥 ∈ {𝐴} ∧ 𝑦𝐵))
62, 5ax-mp 5 . 2 ∃*𝑥(𝑥 ∈ {𝐴} ∧ 𝑦𝐵)
71, 6mpgbir 1726 1 Disj 𝑥 ∈ {𝐴}𝐵
Colors of variables: wff setvar class
Syntax hints:  wa 384   = wceq 1483  wcel 1990  ∃*wmo 2471  {csn 4177  Disj wdisj 4620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1722  ax-4 1737  ax-5 1839  ax-6 1888  ax-7 1935  ax-9 1999  ax-10 2019  ax-11 2034  ax-12 2047  ax-13 2246  ax-ext 2602
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1486  df-ex 1705  df-nf 1710  df-sb 1881  df-eu 2474  df-mo 2475  df-clab 2609  df-cleq 2615  df-clel 2618  df-nfc 2753  df-rmo 2920  df-v 3202  df-sn 4178  df-disj 4621
This theorem is referenced by:  disjx0  4647  disjdifprg  29388  rossros  30243  meadjun  40679
  Copyright terms: Public domain W3C validator