| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > disjxsn | Structured version Visualization version GIF version | ||
| Description: A singleton collection is disjoint. (Contributed by Mario Carneiro, 14-Nov-2016.) |
| Ref | Expression |
|---|---|
| disjxsn | ⊢ Disj 𝑥 ∈ {𝐴}𝐵 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfdisj2 4622 | . 2 ⊢ (Disj 𝑥 ∈ {𝐴}𝐵 ↔ ∀𝑦∃*𝑥(𝑥 ∈ {𝐴} ∧ 𝑦 ∈ 𝐵)) | |
| 2 | moeq 3382 | . . 3 ⊢ ∃*𝑥 𝑥 = 𝐴 | |
| 3 | elsni 4194 | . . . . 5 ⊢ (𝑥 ∈ {𝐴} → 𝑥 = 𝐴) | |
| 4 | 3 | adantr 481 | . . . 4 ⊢ ((𝑥 ∈ {𝐴} ∧ 𝑦 ∈ 𝐵) → 𝑥 = 𝐴) |
| 5 | 4 | moimi 2520 | . . 3 ⊢ (∃*𝑥 𝑥 = 𝐴 → ∃*𝑥(𝑥 ∈ {𝐴} ∧ 𝑦 ∈ 𝐵)) |
| 6 | 2, 5 | ax-mp 5 | . 2 ⊢ ∃*𝑥(𝑥 ∈ {𝐴} ∧ 𝑦 ∈ 𝐵) |
| 7 | 1, 6 | mpgbir 1726 | 1 ⊢ Disj 𝑥 ∈ {𝐴}𝐵 |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 384 = wceq 1483 ∈ wcel 1990 ∃*wmo 2471 {csn 4177 Disj wdisj 4620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 |
| This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-rmo 2920 df-v 3202 df-sn 4178 df-disj 4621 |
| This theorem is referenced by: disjx0 4647 disjdifprg 29388 rossros 30243 meadjun 40679 |
| Copyright terms: Public domain | W3C validator |