![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > 0wdom | Structured version Visualization version GIF version |
Description: Any set weakly dominates the empty set. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
Ref | Expression |
---|---|
0wdom | ⊢ (𝑋 ∈ 𝑉 → ∅ ≼* 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2622 | . . 3 ⊢ ∅ = ∅ | |
2 | 1 | orci 405 | . 2 ⊢ (∅ = ∅ ∨ ∃𝑧 𝑧:𝑋–onto→∅) |
3 | brwdom 8472 | . 2 ⊢ (𝑋 ∈ 𝑉 → (∅ ≼* 𝑋 ↔ (∅ = ∅ ∨ ∃𝑧 𝑧:𝑋–onto→∅))) | |
4 | 2, 3 | mpbiri 248 | 1 ⊢ (𝑋 ∈ 𝑉 → ∅ ≼* 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 383 = wceq 1483 ∃wex 1704 ∈ wcel 1990 ∅c0 3915 class class class wbr 4653 –onto→wfo 5886 ≼* cwdom 8462 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1722 ax-4 1737 ax-5 1839 ax-6 1888 ax-7 1935 ax-8 1992 ax-9 1999 ax-10 2019 ax-11 2034 ax-12 2047 ax-13 2246 ax-ext 2602 ax-sep 4781 ax-nul 4789 ax-pr 4906 ax-un 6949 |
This theorem depends on definitions: df-bi 197 df-or 385 df-an 386 df-3an 1039 df-tru 1486 df-ex 1705 df-nf 1710 df-sb 1881 df-eu 2474 df-mo 2475 df-clab 2609 df-cleq 2615 df-clel 2618 df-nfc 2753 df-ral 2917 df-rex 2918 df-rab 2921 df-v 3202 df-dif 3577 df-un 3579 df-in 3581 df-ss 3588 df-nul 3916 df-if 4087 df-sn 4178 df-pr 4180 df-op 4184 df-uni 4437 df-br 4654 df-opab 4713 df-xp 5120 df-rel 5121 df-cnv 5122 df-dm 5124 df-rn 5125 df-fn 5891 df-fo 5894 df-wdom 8464 |
This theorem is referenced by: brwdom2 8478 wdomtr 8480 |
Copyright terms: Public domain | W3C validator |