![]() |
Metamath
Proof Explorer Theorem List (p. 85 of 426) | < Previous Next > |
Bad symbols? Try the
GIF version. |
||
Mirrors > Metamath Home Page > MPE Home Page > Theorem List Contents > Recent Proofs This page: Page List |
Color key: | ![]() (1-27775) |
![]() (27776-29300) |
![]() (29301-42551) |
Type | Label | Description |
---|---|---|
Statement | ||
Theorem | infmo 8401* | Any class 𝐵 has at most one infimum in 𝐴 (where 𝑅 is interpreted as 'less than'). (Contributed by AV, 6-Oct-2020.) |
⊢ (𝜑 → 𝑅 Or 𝐴) ⇒ ⊢ (𝜑 → ∃*𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) | ||
Theorem | infeu 8402* | An infimum is unique. (Contributed by AV, 6-Oct-2020.) |
⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) ⇒ ⊢ (𝜑 → ∃!𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) | ||
Theorem | fimin2g 8403* | A finite set has a minimum under a total order. (Contributed by AV, 6-Oct-2020.) |
⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥) | ||
Theorem | fiming 8404* | A finite set has a minimum under a total order. (Contributed by AV, 6-Oct-2020.) |
⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 (𝑥 ≠ 𝑦 → 𝑥𝑅𝑦)) | ||
Theorem | fiinfg 8405* | Lemma showing existence and closure of infimum of a finite set. (Contributed by AV, 6-Oct-2020.) |
⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐴 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐴 𝑧𝑅𝑦))) | ||
Theorem | fiinf2g 8406* | A finite set satisfies the conditions to have an infimum. (Contributed by AV, 6-Oct-2020.) |
⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → ∃𝑥 ∈ 𝐵 (∀𝑦 ∈ 𝐵 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐵 𝑧𝑅𝑦))) | ||
Theorem | fiinfcl 8407 | A nonempty finite set contains its infimum. (Contributed by AV, 3-Sep-2020.) |
⊢ ((𝑅 Or 𝐴 ∧ (𝐵 ∈ Fin ∧ 𝐵 ≠ ∅ ∧ 𝐵 ⊆ 𝐴)) → inf(𝐵, 𝐴, 𝑅) ∈ 𝐵) | ||
Theorem | infltoreq 8408 | The infimum of a finite set is less than or equal to all the elements of the set. (Contributed by AV, 4-Sep-2020.) |
⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → 𝐵 ⊆ 𝐴) & ⊢ (𝜑 → 𝐵 ∈ Fin) & ⊢ (𝜑 → 𝐶 ∈ 𝐵) & ⊢ (𝜑 → 𝑆 = inf(𝐵, 𝐴, 𝑅)) ⇒ ⊢ (𝜑 → (𝑆𝑅𝐶 ∨ 𝐶 = 𝑆)) | ||
Theorem | infpr 8409 | The infimum of a pair. (Contributed by AV, 4-Sep-2020.) |
⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴) → inf({𝐵, 𝐶}, 𝐴, 𝑅) = if(𝐵𝑅𝐶, 𝐵, 𝐶)) | ||
Theorem | infsn 8410 | The infimum of a singleton. (Contributed by NM, 2-Oct-2007.) |
⊢ ((𝑅 Or 𝐴 ∧ 𝐵 ∈ 𝐴) → inf({𝐵}, 𝐴, 𝑅) = 𝐵) | ||
Theorem | inf00 8411 | The infimum regarding an empty base set is always the empty set. (Contributed by AV, 4-Sep-2020.) |
⊢ inf(𝐵, ∅, 𝑅) = ∅ | ||
Theorem | infempty 8412* | The infimum of an empty set under a base set which has a unique greatest element is the greatest element of the base set. (Contributed by AV, 4-Sep-2020.) |
⊢ ((𝑅 Or 𝐴 ∧ (𝑋 ∈ 𝐴 ∧ ∀𝑦 ∈ 𝐴 ¬ 𝑋𝑅𝑦) ∧ ∃!𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥𝑅𝑦) → inf(∅, 𝐴, 𝑅) = 𝑋) | ||
Theorem | infiso 8413* | Image of an infimum under an isomorphism. (Contributed by AV, 4-Sep-2020.) |
⊢ (𝜑 → 𝐹 Isom 𝑅, 𝑆 (𝐴, 𝐵)) & ⊢ (𝜑 → 𝐶 ⊆ 𝐴) & ⊢ (𝜑 → ∃𝑥 ∈ 𝐴 (∀𝑦 ∈ 𝐶 ¬ 𝑦𝑅𝑥 ∧ ∀𝑦 ∈ 𝐴 (𝑥𝑅𝑦 → ∃𝑧 ∈ 𝐶 𝑧𝑅𝑦))) & ⊢ (𝜑 → 𝑅 Or 𝐴) ⇒ ⊢ (𝜑 → inf((𝐹 “ 𝐶), 𝐵, 𝑆) = (𝐹‘inf(𝐶, 𝐴, 𝑅))) | ||
Syntax | coi 8414 | Extend class definition to include the canonical order isomorphism to an ordinal. |
class OrdIso(𝑅, 𝐴) | ||
Definition | df-oi 8415* | Define the canonical order isomorphism from the well-order 𝑅 on 𝐴 to an ordinal. (Contributed by Mario Carneiro, 23-May-2015.) |
⊢ OrdIso(𝑅, 𝐴) = if((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴), (recs((ℎ ∈ V ↦ (℩𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) ↾ {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (recs((ℎ ∈ V ↦ (℩𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤}∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣))) “ 𝑥)𝑧𝑅𝑡}), ∅) | ||
Theorem | dfoi 8416* | Rewrite df-oi 8415 with abbreviations. (Contributed by Mario Carneiro, 24-Jun-2015.) |
⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝐹 = recs(𝐺) ⇒ ⊢ OrdIso(𝑅, 𝐴) = if((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴), (𝐹 ↾ {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡}), ∅) | ||
Theorem | oieq1 8417 | Equality theorem for ordinal isomorphism. (Contributed by Mario Carneiro, 23-May-2015.) |
⊢ (𝑅 = 𝑆 → OrdIso(𝑅, 𝐴) = OrdIso(𝑆, 𝐴)) | ||
Theorem | oieq2 8418 | Equality theorem for ordinal isomorphism. (Contributed by Mario Carneiro, 23-May-2015.) |
⊢ (𝐴 = 𝐵 → OrdIso(𝑅, 𝐴) = OrdIso(𝑅, 𝐵)) | ||
Theorem | nfoi 8419 | Hypothesis builder for ordinal isomorphism. (Contributed by Mario Carneiro, 23-May-2015.) (Revised by Mario Carneiro, 15-Oct-2016.) |
⊢ Ⅎ𝑥𝑅 & ⊢ Ⅎ𝑥𝐴 ⇒ ⊢ Ⅎ𝑥OrdIso(𝑅, 𝐴) | ||
Theorem | ordiso2 8420 | Generalize ordiso 8421 to proper classes. (Contributed by Mario Carneiro, 24-Jun-2015.) |
⊢ ((𝐹 Isom E , E (𝐴, 𝐵) ∧ Ord 𝐴 ∧ Ord 𝐵) → 𝐴 = 𝐵) | ||
Theorem | ordiso 8421* | Order-isomorphic ordinal numbers are equal. (Contributed by Jeff Hankins, 16-Oct-2009.) (Proof shortened by Mario Carneiro, 24-Jun-2015.) |
⊢ ((𝐴 ∈ On ∧ 𝐵 ∈ On) → (𝐴 = 𝐵 ↔ ∃𝑓 𝑓 Isom E , E (𝐴, 𝐵))) | ||
Theorem | ordtypecbv 8422* | Lemma for ordtype 8437. (Contributed by Mario Carneiro, 26-Jun-2015.) |
⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) ⇒ ⊢ recs((𝑓 ∈ V ↦ (℩𝑠 ∈ {𝑦 ∈ 𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦}∀𝑟 ∈ {𝑦 ∈ 𝐴 ∣ ∀𝑖 ∈ ran 𝑓 𝑖𝑅𝑦} ¬ 𝑟𝑅𝑠))) = 𝐹 | ||
Theorem | ordtypelem1 8423* | Lemma for ordtype 8437. (Contributed by Mario Carneiro, 24-Jun-2015.) |
⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) ⇒ ⊢ (𝜑 → 𝑂 = (𝐹 ↾ 𝑇)) | ||
Theorem | ordtypelem2 8424* | Lemma for ordtype 8437. (Contributed by Mario Carneiro, 24-Jun-2015.) |
⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) ⇒ ⊢ (𝜑 → Ord 𝑇) | ||
Theorem | ordtypelem3 8425* | Lemma for ordtype 8437. (Contributed by Mario Carneiro, 24-Jun-2015.) |
⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝑀 ∈ (𝑇 ∩ dom 𝐹)) → (𝐹‘𝑀) ∈ {𝑣 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤} ∣ ∀𝑢 ∈ {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ (𝐹 “ 𝑀)𝑗𝑅𝑤} ¬ 𝑢𝑅𝑣}) | ||
Theorem | ordtypelem4 8426* | Lemma for ordtype 8437. (Contributed by Mario Carneiro, 24-Jun-2015.) |
⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) ⇒ ⊢ (𝜑 → 𝑂:(𝑇 ∩ dom 𝐹)⟶𝐴) | ||
Theorem | ordtypelem5 8427* | Lemma for ordtype 8437. (Contributed by Mario Carneiro, 25-Jun-2015.) |
⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) ⇒ ⊢ (𝜑 → (Ord dom 𝑂 ∧ 𝑂:dom 𝑂⟶𝐴)) | ||
Theorem | ordtypelem6 8428* | Lemma for ordtype 8437. (Contributed by Mario Carneiro, 24-Jun-2015.) |
⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) ⇒ ⊢ ((𝜑 ∧ 𝑀 ∈ dom 𝑂) → (𝑁 ∈ 𝑀 → (𝑂‘𝑁)𝑅(𝑂‘𝑀))) | ||
Theorem | ordtypelem7 8429* | Lemma for ordtype 8437. ran 𝑂 is an initial segment of 𝐴 under the well-order 𝑅. (Contributed by Mario Carneiro, 25-Jun-2015.) |
⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) ⇒ ⊢ (((𝜑 ∧ 𝑁 ∈ 𝐴) ∧ 𝑀 ∈ dom 𝑂) → ((𝑂‘𝑀)𝑅𝑁 ∨ 𝑁 ∈ ran 𝑂)) | ||
Theorem | ordtypelem8 8430* | Lemma for ordtype 8437. (Contributed by Mario Carneiro, 25-Jun-2015.) |
⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) ⇒ ⊢ (𝜑 → 𝑂 Isom E , 𝑅 (dom 𝑂, ran 𝑂)) | ||
Theorem | ordtypelem9 8431* | Lemma for ordtype 8437. Either the function OrdIso is an isomorphism onto all of 𝐴, or OrdIso is not a set, which by oif 8435 implies that either ran 𝑂 ⊆ 𝐴 is a proper class or dom 𝑂 = On. (Contributed by Mario Carneiro, 25-Jun-2015.) |
⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) & ⊢ (𝜑 → 𝑂 ∈ V) ⇒ ⊢ (𝜑 → 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴)) | ||
Theorem | ordtypelem10 8432* | Lemma for ordtype 8437. Using ax-rep 4771, exclude the possibility that 𝑂 is a proper class and does not enumerate all of 𝐴. (Contributed by Mario Carneiro, 25-Jun-2015.) |
⊢ 𝐹 = recs(𝐺) & ⊢ 𝐶 = {𝑤 ∈ 𝐴 ∣ ∀𝑗 ∈ ran ℎ 𝑗𝑅𝑤} & ⊢ 𝐺 = (ℎ ∈ V ↦ (℩𝑣 ∈ 𝐶 ∀𝑢 ∈ 𝐶 ¬ 𝑢𝑅𝑣)) & ⊢ 𝑇 = {𝑥 ∈ On ∣ ∃𝑡 ∈ 𝐴 ∀𝑧 ∈ (𝐹 “ 𝑥)𝑧𝑅𝑡} & ⊢ 𝑂 = OrdIso(𝑅, 𝐴) & ⊢ (𝜑 → 𝑅 We 𝐴) & ⊢ (𝜑 → 𝑅 Se 𝐴) ⇒ ⊢ (𝜑 → 𝑂 Isom E , 𝑅 (dom 𝑂, 𝐴)) | ||
Theorem | oi0 8433 | Definition of the ordinal isomorphism when its arguments are not meaningful. (Contributed by Mario Carneiro, 25-Jun-2015.) |
⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ (¬ (𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 = ∅) | ||
Theorem | oicl 8434 | The order type of the well-order 𝑅 on 𝐴 is an ordinal. (Contributed by Mario Carneiro, 23-May-2015.) (Revised by Mario Carneiro, 25-Jun-2015.) |
⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ Ord dom 𝐹 | ||
Theorem | oif 8435 | The order isomorphism of the well-order 𝑅 on 𝐴 is a function. (Contributed by Mario Carneiro, 23-May-2015.) |
⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ 𝐹:dom 𝐹⟶𝐴 | ||
Theorem | oiiso2 8436 | The order isomorphism of the well-order 𝑅 on 𝐴 is an isomorphism onto ran 𝑂 (which is a subset of 𝐴 by oif 8435). (Contributed by Mario Carneiro, 25-Jun-2015.) |
⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, ran 𝐹)) | ||
Theorem | ordtype 8437 | For any set-like well-ordered class, there is an isomorphic ordinal number called its order type. (Contributed by Jeff Hankins, 17-Oct-2009.) (Revised by Mario Carneiro, 25-Jun-2015.) |
⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)) | ||
Theorem | oiiniseg 8438 | ran 𝐹 is an initial segment of 𝐴 under the well-order 𝑅. (Contributed by Mario Carneiro, 26-Jun-2015.) |
⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ (((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) ∧ (𝑁 ∈ 𝐴 ∧ 𝑀 ∈ dom 𝐹)) → ((𝐹‘𝑀)𝑅𝑁 ∨ 𝑁 ∈ ran 𝐹)) | ||
Theorem | ordtype2 8439 | For any set-like well-ordered class, if the order isomorphism exists (is a set), then it maps some ordinal onto 𝐴 isomorphically. Otherwise, 𝐹 is a proper class, which implies that either ran 𝐹 ⊆ 𝐴 is a proper class or dom 𝐹 = On. This weak version of ordtype 8437 does not require the Axiom of Replacement. (Contributed by Mario Carneiro, 25-Jun-2015.) |
⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴 ∧ 𝐹 ∈ V) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)) | ||
Theorem | oiexg 8440 | The order isomorphism on a set is a set. (Contributed by Mario Carneiro, 25-Jun-2015.) |
⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → 𝐹 ∈ V) | ||
Theorem | oion 8441 | The order type of the well-order 𝑅 on 𝐴 is an ordinal. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 23-May-2015.) |
⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ (𝐴 ∈ 𝑉 → dom 𝐹 ∈ On) | ||
Theorem | oiiso 8442 | The order isomorphism of the well-order 𝑅 on 𝐴 is an isomorphism. (Contributed by Mario Carneiro, 23-May-2015.) |
⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴) → 𝐹 Isom E , 𝑅 (dom 𝐹, 𝐴)) | ||
Theorem | oien 8443 | The order type of a well-ordered set is equinumerous to the set. (Contributed by Mario Carneiro, 23-May-2015.) |
⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴) → dom 𝐹 ≈ 𝐴) | ||
Theorem | oieu 8444 | Uniqueness of the unique ordinal isomorphism. (Contributed by Mario Carneiro, 23-May-2015.) (Revised by Mario Carneiro, 25-Jun-2015.) |
⊢ 𝐹 = OrdIso(𝑅, 𝐴) ⇒ ⊢ ((𝑅 We 𝐴 ∧ 𝑅 Se 𝐴) → ((Ord 𝐵 ∧ 𝐺 Isom E , 𝑅 (𝐵, 𝐴)) ↔ (𝐵 = dom 𝐹 ∧ 𝐺 = 𝐹))) | ||
Theorem | oismo 8445 | When 𝐴 is a subclass of On, 𝐹 is a strictly monotone ordinal functions, and it is also complete (it is an isomorphism onto all of 𝐴). The proof avoids ax-rep 4771 (the second statement is trivial under ax-rep 4771). (Contributed by Mario Carneiro, 26-Jun-2015.) |
⊢ 𝐹 = OrdIso( E , 𝐴) ⇒ ⊢ (𝐴 ⊆ On → (Smo 𝐹 ∧ ran 𝐹 = 𝐴)) | ||
Theorem | oiid 8446 | The order type of an ordinal under the ∈ order is itself, and the order isomorphism is the identity function. (Contributed by Mario Carneiro, 26-Jun-2015.) |
⊢ (Ord 𝐴 → OrdIso( E , 𝐴) = ( I ↾ 𝐴)) | ||
Theorem | hartogslem1 8447* | Lemma for hartogs 8449. (Contributed by Mario Carneiro, 14-Jan-2013.) (Revised by Mario Carneiro, 15-May-2015.) |
⊢ 𝐹 = {〈𝑟, 𝑦〉 ∣ (((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} & ⊢ 𝑅 = {〈𝑠, 𝑡〉 ∣ ∃𝑤 ∈ 𝑦 ∃𝑧 ∈ 𝑦 ((𝑠 = (𝑓‘𝑤) ∧ 𝑡 = (𝑓‘𝑧)) ∧ 𝑤 E 𝑧)} ⇒ ⊢ (dom 𝐹 ⊆ 𝒫 (𝐴 × 𝐴) ∧ Fun 𝐹 ∧ (𝐴 ∈ 𝑉 → ran 𝐹 = {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴})) | ||
Theorem | hartogslem2 8448* | Lemma for hartogs 8449. (Contributed by Mario Carneiro, 14-Jan-2013.) |
⊢ 𝐹 = {〈𝑟, 𝑦〉 ∣ (((dom 𝑟 ⊆ 𝐴 ∧ ( I ↾ dom 𝑟) ⊆ 𝑟 ∧ 𝑟 ⊆ (dom 𝑟 × dom 𝑟)) ∧ (𝑟 ∖ I ) We dom 𝑟) ∧ 𝑦 = dom OrdIso((𝑟 ∖ I ), dom 𝑟))} & ⊢ 𝑅 = {〈𝑠, 𝑡〉 ∣ ∃𝑤 ∈ 𝑦 ∃𝑧 ∈ 𝑦 ((𝑠 = (𝑓‘𝑤) ∧ 𝑡 = (𝑓‘𝑧)) ∧ 𝑤 E 𝑧)} ⇒ ⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ∈ V) | ||
Theorem | hartogs 8449* | Given any set, the Hartogs number of the set is the least ordinal not dominated by that set. This theorem proves that there is always an ordinal which satisfies this. (This theorem can be proven trivially using the AC - see theorem ondomon 9385- but this proof works in ZF.) (Contributed by Jeff Hankins, 22-Oct-2009.) (Revised by Mario Carneiro, 15-May-2015.) |
⊢ (𝐴 ∈ 𝑉 → {𝑥 ∈ On ∣ 𝑥 ≼ 𝐴} ∈ On) | ||
Theorem | wofib 8450 | The only sets which are well-ordered forwards and backwards are finite sets. (Contributed by Mario Carneiro, 30-Jan-2014.) (Revised by Mario Carneiro, 23-May-2015.) |
⊢ 𝐴 ∈ V ⇒ ⊢ ((𝑅 Or 𝐴 ∧ 𝐴 ∈ Fin) ↔ (𝑅 We 𝐴 ∧ ◡𝑅 We 𝐴)) | ||
Theorem | wemaplem1 8451* | Value of the lexicographic order on a sequence space. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} ⇒ ⊢ ((𝑃 ∈ 𝑉 ∧ 𝑄 ∈ 𝑊) → (𝑃𝑇𝑄 ↔ ∃𝑎 ∈ 𝐴 ((𝑃‘𝑎)𝑆(𝑄‘𝑎) ∧ ∀𝑏 ∈ 𝐴 (𝑏𝑅𝑎 → (𝑃‘𝑏) = (𝑄‘𝑏))))) | ||
Theorem | wemaplem2 8452* | Lemma for wemapso 8456. Transitivity. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝑃 ∈ (𝐵 ↑𝑚 𝐴)) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑𝑚 𝐴)) & ⊢ (𝜑 → 𝑄 ∈ (𝐵 ↑𝑚 𝐴)) & ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → 𝑆 Po 𝐵) & ⊢ (𝜑 → 𝑎 ∈ 𝐴) & ⊢ (𝜑 → (𝑃‘𝑎)𝑆(𝑋‘𝑎)) & ⊢ (𝜑 → ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑎 → (𝑃‘𝑐) = (𝑋‘𝑐))) & ⊢ (𝜑 → 𝑏 ∈ 𝐴) & ⊢ (𝜑 → (𝑋‘𝑏)𝑆(𝑄‘𝑏)) & ⊢ (𝜑 → ∀𝑐 ∈ 𝐴 (𝑐𝑅𝑏 → (𝑋‘𝑐) = (𝑄‘𝑐))) ⇒ ⊢ (𝜑 → 𝑃𝑇𝑄) | ||
Theorem | wemaplem3 8453* | Lemma for wemapso 8456. Transitivity. (Contributed by Stefan O'Rear, 17-Jan-2015.) |
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝑃 ∈ (𝐵 ↑𝑚 𝐴)) & ⊢ (𝜑 → 𝑋 ∈ (𝐵 ↑𝑚 𝐴)) & ⊢ (𝜑 → 𝑄 ∈ (𝐵 ↑𝑚 𝐴)) & ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → 𝑆 Po 𝐵) & ⊢ (𝜑 → 𝑃𝑇𝑋) & ⊢ (𝜑 → 𝑋𝑇𝑄) ⇒ ⊢ (𝜑 → 𝑃𝑇𝑄) | ||
Theorem | wemappo 8454* |
Construct lexicographic order on a function space based on a
well-ordering of the indexes and a total ordering of the values.
Without totality on the values or least differing indexes, the best we can prove here is a partial order. (Contributed by Stefan O'Rear, 18-Jan-2015.) |
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 Or 𝐴 ∧ 𝑆 Po 𝐵) → 𝑇 Po (𝐵 ↑𝑚 𝐴)) | ||
Theorem | wemapsolem 8455* | Lemma for wemapso 8456. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Mario Carneiro, 8-Feb-2015.) |
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} & ⊢ 𝑈 ⊆ (𝐵 ↑𝑚 𝐴) & ⊢ (𝜑 → 𝐴 ∈ V) & ⊢ (𝜑 → 𝑅 Or 𝐴) & ⊢ (𝜑 → 𝑆 Or 𝐵) & ⊢ ((𝜑 ∧ ((𝑎 ∈ 𝑈 ∧ 𝑏 ∈ 𝑈) ∧ 𝑎 ≠ 𝑏)) → ∃𝑐 ∈ dom (𝑎 ∖ 𝑏)∀𝑑 ∈ dom (𝑎 ∖ 𝑏) ¬ 𝑑𝑅𝑐) ⇒ ⊢ (𝜑 → 𝑇 Or 𝑈) | ||
Theorem | wemapso 8456* | Construct lexicographic order on a function space based on a well-ordering of the indexes and a total ordering of the values. (Contributed by Stefan O'Rear, 18-Jan-2015.) (Revised by Mario Carneiro, 8-Feb-2015.) |
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 We 𝐴 ∧ 𝑆 Or 𝐵) → 𝑇 Or (𝐵 ↑𝑚 𝐴)) | ||
Theorem | wemapso2lem 8457* | Lemma for wemapso2 8458. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 1-Jul-2019.) |
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} & ⊢ 𝑈 = {𝑥 ∈ (𝐵 ↑𝑚 𝐴) ∣ 𝑥 finSupp 𝑍} ⇒ ⊢ (((𝐴 ∈ 𝑉 ∧ 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵) ∧ 𝑍 ∈ 𝑊) → 𝑇 Or 𝑈) | ||
Theorem | wemapso2 8458* | An alternative to having a well-order on 𝑅 in wemapso 8456 is to restrict the function set to finitely-supported functions. (Contributed by Mario Carneiro, 8-Feb-2015.) (Revised by AV, 1-Jul-2019.) |
⊢ 𝑇 = {〈𝑥, 𝑦〉 ∣ ∃𝑧 ∈ 𝐴 ((𝑥‘𝑧)𝑆(𝑦‘𝑧) ∧ ∀𝑤 ∈ 𝐴 (𝑤𝑅𝑧 → (𝑥‘𝑤) = (𝑦‘𝑤)))} & ⊢ 𝑈 = {𝑥 ∈ (𝐵 ↑𝑚 𝐴) ∣ 𝑥 finSupp 𝑍} ⇒ ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑅 Or 𝐴 ∧ 𝑆 Or 𝐵) → 𝑇 Or 𝑈) | ||
Theorem | card2on 8459* | Proof that the alternate definition cardval2 8817 is always a set, and indeed is an ordinal. (Contributed by Mario Carneiro, 14-Jan-2013.) |
⊢ {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴} ∈ On | ||
Theorem | card2inf 8460* | The definition cardval2 8817 has the curious property that for non-numerable sets (for which ndmfv 6218 yields ∅), it still evaluates to a nonempty set, and indeed it contains ω. (Contributed by Mario Carneiro, 15-Jan-2013.) (Revised by Mario Carneiro, 27-Apr-2015.) |
⊢ 𝐴 ∈ V ⇒ ⊢ (¬ ∃𝑦 ∈ On 𝑦 ≈ 𝐴 → ω ⊆ {𝑥 ∈ On ∣ 𝑥 ≺ 𝐴}) | ||
Syntax | char 8461 | Class symbol for the Hartogs/cardinal successor function. |
class har | ||
Syntax | cwdom 8462 | Class symbol for the weak dominance relation. |
class ≼* | ||
Definition | df-har 8463* |
Define the Hartogs function , which maps all sets to the smallest
ordinal that cannot be injected into the given set. In the important
special case where 𝑥 is an ordinal, this is the
cardinal successor
operation.
Traditionally, the Hartogs number of a set is written ℵ(𝑋) and the cardinal successor 𝑋 +; we use functional notation for this, and cannot use the aleph symbol because it is taken for the enumerating function of the infinite initial ordinals df-aleph 8766. Some authors define the Hartogs number of a set to be the least *infinite* ordinal which does not inject into it, thus causing the range to consist only of alephs. We use the simpler definition where the value can be any successor cardinal. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
⊢ har = (𝑥 ∈ V ↦ {𝑦 ∈ On ∣ 𝑦 ≼ 𝑥}) | ||
Definition | df-wdom 8464* | A set is weakly dominated by a "larger" set iff the "larger" set can be mapped onto the "smaller" set or the smaller set is empty; equivalently if the smaller set can be placed into bijection with some partition of the larger set. When choice is assumed (as fodom 9344), this coincides with the 1-1 definition df-dom 7957; however, it is not known whether this is a choice-equivalent or a strictly weaker form. Some discussion of this question can be found at http://boolesrings.org/asafk/2014/on-the-partition-principle/. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
⊢ ≼* = {〈𝑥, 𝑦〉 ∣ (𝑥 = ∅ ∨ ∃𝑧 𝑧:𝑦–onto→𝑥)} | ||
Theorem | harf 8465 | Functionality of the Hartogs function. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
⊢ har:V⟶On | ||
Theorem | harcl 8466 | Closure of the Hartogs function in the ordinals. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
⊢ (har‘𝑋) ∈ On | ||
Theorem | harval 8467* | Function value of the Hartogs function. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
⊢ (𝑋 ∈ 𝑉 → (har‘𝑋) = {𝑦 ∈ On ∣ 𝑦 ≼ 𝑋}) | ||
Theorem | elharval 8468 | The Hartogs number of a set is greater than all ordinals which inject into it. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 15-May-2015.) |
⊢ (𝑌 ∈ (har‘𝑋) ↔ (𝑌 ∈ On ∧ 𝑌 ≼ 𝑋)) | ||
Theorem | harndom 8469 | The Hartogs number of a set does not inject into that set. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 15-May-2015.) |
⊢ ¬ (har‘𝑋) ≼ 𝑋 | ||
Theorem | harword 8470 | Weak ordering property of the Hartogs function. (Contributed by Stefan O'Rear, 14-Feb-2015.) |
⊢ (𝑋 ≼ 𝑌 → (har‘𝑋) ⊆ (har‘𝑌)) | ||
Theorem | relwdom 8471 | Weak dominance is a relation. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
⊢ Rel ≼* | ||
Theorem | brwdom 8472* | Property of weak dominance (definitional form). (Contributed by Stefan O'Rear, 11-Feb-2015.) |
⊢ (𝑌 ∈ 𝑉 → (𝑋 ≼* 𝑌 ↔ (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌–onto→𝑋))) | ||
Theorem | brwdomi 8473* | Property of weak dominance, forward direction only. (Contributed by Mario Carneiro, 5-May-2015.) |
⊢ (𝑋 ≼* 𝑌 → (𝑋 = ∅ ∨ ∃𝑧 𝑧:𝑌–onto→𝑋)) | ||
Theorem | brwdomn0 8474* | Weak dominance over nonempty sets. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
⊢ (𝑋 ≠ ∅ → (𝑋 ≼* 𝑌 ↔ ∃𝑧 𝑧:𝑌–onto→𝑋)) | ||
Theorem | 0wdom 8475 | Any set weakly dominates the empty set. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
⊢ (𝑋 ∈ 𝑉 → ∅ ≼* 𝑋) | ||
Theorem | fowdom 8476 | An onto function implies weak dominance. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
⊢ ((𝐹 ∈ 𝑉 ∧ 𝐹:𝑌–onto→𝑋) → 𝑋 ≼* 𝑌) | ||
Theorem | wdomref 8477 | Reflexivity of weak dominance. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
⊢ (𝑋 ∈ 𝑉 → 𝑋 ≼* 𝑋) | ||
Theorem | brwdom2 8478* | Alternate characterization of the weak dominance predicate which does not require special treatment of the empty set. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
⊢ (𝑌 ∈ 𝑉 → (𝑋 ≼* 𝑌 ↔ ∃𝑦 ∈ 𝒫 𝑌∃𝑧 𝑧:𝑦–onto→𝑋)) | ||
Theorem | domwdom 8479 | Weak dominance is implied by dominance in the usual sense. (Contributed by Stefan O'Rear, 11-Feb-2015.) |
⊢ (𝑋 ≼ 𝑌 → 𝑋 ≼* 𝑌) | ||
Theorem | wdomtr 8480 | Transitivity of weak dominance. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
⊢ ((𝑋 ≼* 𝑌 ∧ 𝑌 ≼* 𝑍) → 𝑋 ≼* 𝑍) | ||
Theorem | wdomen1 8481 | Equality-like theorem for equinumerosity and weak dominance. (Contributed by Mario Carneiro, 18-May-2015.) |
⊢ (𝐴 ≈ 𝐵 → (𝐴 ≼* 𝐶 ↔ 𝐵 ≼* 𝐶)) | ||
Theorem | wdomen2 8482 | Equality-like theorem for equinumerosity and weak dominance. (Contributed by Mario Carneiro, 18-May-2015.) |
⊢ (𝐴 ≈ 𝐵 → (𝐶 ≼* 𝐴 ↔ 𝐶 ≼* 𝐵)) | ||
Theorem | wdompwdom 8483 | Weak dominance strengthens to usual dominance on the power sets. (Contributed by Stefan O'Rear, 11-Feb-2015.) (Revised by Mario Carneiro, 5-May-2015.) |
⊢ (𝑋 ≼* 𝑌 → 𝒫 𝑋 ≼ 𝒫 𝑌) | ||
Theorem | canthwdom 8484 | Cantor's Theorem, stated using weak dominance (this is actually a stronger statement than canth2 8113, equivalent to canth 6608). (Contributed by Mario Carneiro, 15-May-2015.) |
⊢ ¬ 𝒫 𝐴 ≼* 𝐴 | ||
Theorem | wdom2d 8485* | Deduce weak dominance from an implicit onto function (stated in a way which avoids ax-rep 4771). (Contributed by Stefan O'Rear, 13-Feb-2015.) |
⊢ (𝜑 → 𝐴 ∈ 𝑉) & ⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 𝑥 = 𝑋) ⇒ ⊢ (𝜑 → 𝐴 ≼* 𝐵) | ||
Theorem | wdomd 8486* | Deduce weak dominance from an implicit onto function. (Contributed by Stefan O'Rear, 13-Feb-2015.) |
⊢ (𝜑 → 𝐵 ∈ 𝑊) & ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐴) → ∃𝑦 ∈ 𝐵 𝑥 = 𝑋) ⇒ ⊢ (𝜑 → 𝐴 ≼* 𝐵) | ||
Theorem | brwdom3 8487* | Condition for weak dominance with a condition reminiscent of wdomd 8486. (Contributed by Stefan O'Rear, 13-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.) |
⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → (𝑋 ≼* 𝑌 ↔ ∃𝑓∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦))) | ||
Theorem | brwdom3i 8488* | Weak dominance implies existence of a covering function. (Contributed by Stefan O'Rear, 13-Feb-2015.) |
⊢ (𝑋 ≼* 𝑌 → ∃𝑓∀𝑥 ∈ 𝑋 ∃𝑦 ∈ 𝑌 𝑥 = (𝑓‘𝑦)) | ||
Theorem | unwdomg 8489 | Weak dominance of a (disjoint) union. (Contributed by Stefan O'Rear, 13-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.) |
⊢ ((𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷 ∧ (𝐵 ∩ 𝐷) = ∅) → (𝐴 ∪ 𝐶) ≼* (𝐵 ∪ 𝐷)) | ||
Theorem | xpwdomg 8490 | Weak dominance of a Cartesian product. (Contributed by Stefan O'Rear, 13-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.) |
⊢ ((𝐴 ≼* 𝐵 ∧ 𝐶 ≼* 𝐷) → (𝐴 × 𝐶) ≼* (𝐵 × 𝐷)) | ||
Theorem | wdomima2g 8491 | A set is weakly dominant over its image under any function. This version of wdomimag 8492 is stated so as to avoid ax-rep 4771. (Contributed by Mario Carneiro, 25-Jun-2015.) |
⊢ ((Fun 𝐹 ∧ 𝐴 ∈ 𝑉 ∧ (𝐹 “ 𝐴) ∈ 𝑊) → (𝐹 “ 𝐴) ≼* 𝐴) | ||
Theorem | wdomimag 8492 | A set is weakly dominant over its image under any function. (Contributed by Stefan O'Rear, 14-Feb-2015.) (Revised by Mario Carneiro, 25-Jun-2015.) |
⊢ ((Fun 𝐹 ∧ 𝐴 ∈ 𝑉) → (𝐹 “ 𝐴) ≼* 𝐴) | ||
Theorem | unxpwdom2 8493 | Lemma for unxpwdom 8494. (Contributed by Mario Carneiro, 15-May-2015.) |
⊢ ((𝐴 × 𝐴) ≈ (𝐵 ∪ 𝐶) → (𝐴 ≼* 𝐵 ∨ 𝐴 ≼ 𝐶)) | ||
Theorem | unxpwdom 8494 | If a Cartesian product is dominated by a union, then the base set is either weakly dominated by one factor of the union or dominated by the other. Extracted from Lemma 2.3 of [KanamoriPincus] p. 420. (Contributed by Mario Carneiro, 15-May-2015.) |
⊢ ((𝐴 × 𝐴) ≼ (𝐵 ∪ 𝐶) → (𝐴 ≼* 𝐵 ∨ 𝐴 ≼ 𝐶)) | ||
Theorem | harwdom 8495 | The Hartogs function is weakly dominated by 𝒫 (𝑋 × 𝑋). This follows from a more precise analysis of the bound used in hartogs 8449 to prove that (har‘𝑋) is a set. (Contributed by Mario Carneiro, 15-May-2015.) |
⊢ (𝑋 ∈ 𝑉 → (har‘𝑋) ≼* 𝒫 (𝑋 × 𝑋)) | ||
Theorem | ixpiunwdom 8496* | Describe an onto function from the indexed cartesian product to the indexed union. Together with ixpssmapg 7938 this shows that ∪ 𝑥 ∈ 𝐴𝐵 and X𝑥 ∈ 𝐴𝐵 have closely linked cardinalities. (Contributed by Mario Carneiro, 27-Aug-2015.) |
⊢ ((𝐴 ∈ 𝑉 ∧ ∪ 𝑥 ∈ 𝐴 𝐵 ∈ 𝑊 ∧ X𝑥 ∈ 𝐴 𝐵 ≠ ∅) → ∪ 𝑥 ∈ 𝐴 𝐵 ≼* (X𝑥 ∈ 𝐴 𝐵 × 𝐴)) | ||
Axiom | ax-reg 8497* | Axiom of Regularity. An axiom of Zermelo-Fraenkel set theory. Also called the Axiom of Foundation. A rather non-intuitive axiom that denies more than it asserts, it states (in the form of zfreg 8500) that every nonempty set contains a set disjoint from itself. One consequence is that it denies the existence of a set containing itself (elirrv 8504). A stronger version that works for proper classes is proved as zfregs 8608. (Contributed by NM, 14-Aug-1993.) |
⊢ (∃𝑦 𝑦 ∈ 𝑥 → ∃𝑦(𝑦 ∈ 𝑥 ∧ ∀𝑧(𝑧 ∈ 𝑦 → ¬ 𝑧 ∈ 𝑥))) | ||
Theorem | axreg2 8498* | Axiom of Regularity expressed more compactly. (Contributed by NM, 14-Aug-2003.) |
⊢ (𝑥 ∈ 𝑦 → ∃𝑥(𝑥 ∈ 𝑦 ∧ ∀𝑧(𝑧 ∈ 𝑥 → ¬ 𝑧 ∈ 𝑦))) | ||
Theorem | zfregcl 8499* | The Axiom of Regularity with class variables. (Contributed by NM, 5-Aug-1994.) Replace sethood hypothesis with sethood antecedent. (Revised by BJ, 27-Apr-2021.) |
⊢ (𝐴 ∈ 𝑉 → (∃𝑥 𝑥 ∈ 𝐴 → ∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝑥 ¬ 𝑦 ∈ 𝐴)) | ||
Theorem | zfreg 8500* | The Axiom of Regularity using abbreviations. Axiom 6 of [TakeutiZaring] p. 21. This is called the "weak form." Axiom Reg of [BellMachover] p. 480. There is also a "strong form," not requiring that 𝐴 be a set, that can be proved with more difficulty (see zfregs 8608). (Contributed by NM, 26-Nov-1995.) Replace sethood hypothesis with sethood antecedent. (Revised by BJ, 27-Apr-2021.) |
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐴 ≠ ∅) → ∃𝑥 ∈ 𝐴 (𝑥 ∩ 𝐴) = ∅) |
< Previous Next > |
Copyright terms: Public domain | < Previous Next > |